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Abstract. We propose a new evolution model for large strain elasto-
plasticity. In a quasi-static setting the suggested model can be for-
mulated as a variational evolution. We establish existence of a closely
related evolution in a regularized context. We then discuss how the
proposed model performs in both a rigid-plastic, and a one-dimensional
settings and compare the results with those that could be achieved using
other formulations.

1. Introduction

Deep drawing, rolling, and other metal forming processes cannot be apprehended
within the framework of classical (small strain) elasto-plasticity because both large
strains and large rotations are inherent to such processes. Finite plasticity should
be the macroscopic answer. Unfortunately, more than 50 years after its inception,
the field is still a “work in progress”.

The 70’s and 80’s witnessed a flurry of competing theories. The controversies
were numerous, ranging from the nature of the plastic strain to that of the yield
criterium. Those are wonderfully recalled in [37]. The resulting mechanical strife
subsequently waned without proper adjudication as the protagonists ceased their
professional activities. Of course, finite plasticity is still an active field and new
monographs on that topic are being published yearly. However, it seems difficult
to extract a common thread among the various contributions; see for example the
vastly different accounts of the topic in [3] versus [25].

With such an heritage, it would undoubtedly be preposterous on our part to
aspire to an all encompassing vision of the current state of finite plasticity. Nor
do we wish to resuscitate the battles of yore that pitted e.g. proponents of the
Jaumann stress rate against those of the convected stress rate (see e.g. [25]), or
still to weigh in on the thermodynamical correctness of such or such intermediate
configuration....

Rather, we propose in this contribution to try and circumscribe a theory of finite
plasticity with two guiding principles. On the one hand it should not overstep the
fairly consensual confines of rational thermodynamics that were first elaborated by
C. Truesdell and many equally famous co-workers [40]; for our purpose those
famous contributions should be refined with the import of the theory of Standard
Generalized Materials introduced by B. Halphen & Q.S. Nguyen [22] because
that approach draws its inspiration in convex duality, a very fruitful tool when
dealing with the modeling of any kind of plastic behavior.

On the other hand the resulting model should accommodate the more recent ad-
vances in the modeling of rate independent evolutions within a variational frame-
work. The theory of variational rate independent evolutions has in the past 20
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years or so proved to be a handy tool in the mathematical understanding of a
variety of rate independent evolutions, be it brittle fracture [18], [12], [17], [11],
various approaches to damage [19], [15], [30], or still small strain elasto-plasticity
[9], etc..... To our knowledge the only mature attempt in the direction of finite strain
elasto-plasticity is that of A. Mielke, together with several co-workers; among the
many contributions see in particular [32], [33], [28]. The resulting model will be
commented upon and distinguished from ours in Remark 4.9 below.

Our goal will be achieved in Section 4 and, specifically, in Proposition 4.1 and
Definition 4.6. To do so we will first establish a short list of guidelines in Section
2, then use the full force of thermodynamical modeling – restricted to an isother-
mal setting – in Section 3. This will result in a coupled system of P.D.E.’s and
O.D.E.’s (see Model 3.4) which, when specialized to a quasi-static setting, can be
re-formulated as a variational evolution.

Those evolutions are characterized by a stationarity condition satisfied by the
state variables at every time, together with a statement of energy balance which
constrains the temporal evolution. In our setting that stationarity condition does
not imply any kind of minimality statement because the relevant energies lack
convexity. A similar issue arises in the setting of e.g. fracture mechanics. Mathe-
matically, stationarity is a very difficult condition to handle, so that the first step
towards an understanding of the evolution consists in replacing stationarity by a
global minimality statement. This is what has been accomplished in the setting of
fracture, precisely because of a similar lack of convexity. There, very few mathe-
matical results attempt any departure from global minimality; see however [23, 24].
In the present setting, even such limited attempts are beyond reach. Thus, as far
as the existence of such evolutions is concerned, we will restrict our analysis to the
global minimality setting in the present setting.

Unfortunately, even then, the obtained variational evolution is intractable at
present in its full generality. The formidable hurdles that need to be overcome will
be further elaborated upon at the end of Section 4.

An adequate regularization of the model, similar in spirit to that performed in
[28], alleviates all obstacles and results in a well-posed variational evolution. To
this effect, one should introduce an additional energy which depends super-linearly
on both the plastic strain and its gradient; in essence this amounts to introducing
both hardening and gradient plasticity into the model. See [13], [14] for a model
of gradient plasticity and e.g. [26], [16] for models of hardening. This is the object
of Section 5 and, in particular of Theorem 5.5 where the existence of a variational
evolution is established.

As of yet, we are unable to assert any kind of time regularity of the plastic
strains associated with the evolution, and this in spite of the various regularizations.
Consequently, we are also unable to prove that the regularized evolution is also a
“classical” solution, that is that it satisfies a regularized flow rule; see by contrast
[16, Section 4] in the small strain setting.

The last two sections of the paper are an exercise in self-criticism. In Section 6 we
specialize the obtained model to the rigid-plastic case. There, elastic deformations
are constrained to be pure rotations. It is our unsubstantiated belief that a “good”
elasto-plastic model should behave reasonably decently when specialized to that
setting. Unfortunately, such may not be the case at least in the context of globally
minimizing variational evolutions as illustrated in Lemma 6.1. That result seems
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to intimate that the relaxation (in the sense of the Calculus of Variations) of the
obtained model is identically 0, which does not augur well for a similar relaxation
of the full elasto-plastic model. This should be mitigated by the realization that it
is not so obvious that Lemma 6.1 actually computes a relevant quantity from the
standpoint of relaxation because we have no clear picture of the correct functional
framework. Further, this defect is not specific to our model, but it should equally
affect all variational elasto-plastic models which abide by any kind of multiplicative
decomposition of the deformation gradient. So the culprit, if there is one at all,
seems to be the multiplicative decomposition.....

This assertion is supported by Section 7, where we demonstrate that any mul-
tiplicative model, when specialized to a one-dimensional setting, will produce un-
stable homogeneous solutions during any kind of loading process, thereby negating
the existence of a well defined locally minimizing evolution. Of course, once again,
the notion of stability is tied to the consideration of some kind of energy functional
which should lose positivity in some direction. Our choice of energy is dictated by
our variational “attitude”, but it might prove to be the wrong one.

Notationwise, R3
1 := {(x, y, z) ∈ R∗+ × R∗+ × R∗+ : xyz = 1} and 13 := (1, 1, 1).

Throughout, we identify unimodular diagonal 3 × 3-matrices with positive entries
with elements of R3

1 with the understanding that the rules of matrix multiplication
apply for an element of R3

1 multiplied by a 3× 3-matrix.
The matrix inner product is the Frobenius product (A · B = tr BTA)). Any

3 × 3 -matrix M (an element of M3×3) will be decomposed, if needed, into M =
tr (M/3)I + MD where I is the identity matrix and MD stands for the deviatoric
(trace free) part of M . The space of all symmetric 3 × 3-matrices is denoted by
M3×3
s while the subspace of trace free such matrices is denoted by M3×3

D . Also,

we denote by M3×3
+ the subset of M3×3 of matrices with positive determinant. We

finally define

(1.1) P := {P ∈M3×3 : P diagonal with positive entries and detP = 1}

and

E := {E ∈M3×3
s : detE > 0}.

First order time derivatives are denoted with a dot (α̇ := dα/dt) while the
differential of a scalar-valued function W : RP → R is denoted by DW.

If K is a closed convex subset of RP , we denote, for any k ∈ K, by NK(k) the
normal cone to K at k, that is

NK(k) :=


{0}, k ∈ int K

{ν ∈ RP s.t. ν · (k′ − k) ≤ 0 ∀k′ ∈ K}, k ∈ ∂K

∅, k /∈ K̄.

We will always write ‖v‖Lp for the Lp-norm of a field v, whatever the target

space of that field might be: Rn, M3×3
D , ... . Also, for any finite dimensional space

X, Mb(Ω;X) will denote the space of X-valued bounded Radon measures on Ω.
Throughout, we will call modulus of continuity any monotonically increasing

continuous function ω : R+ → R with ω(0) = 0.
Finally C will denote a generic positive constant, so that e.g. 2C is written C.
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2. A short list of necessary ingredients

We propose in this short section to outline a short list of simple (simplistic?)
principles that any elasto-plastic model should in our opinion conform to.

The widespread belief that elastic and plastic deformations should be composed
translates at the deformation gradient level into a multiplicative decomposition of
the corresponding strains. Of course popular consensus has never been an adequate
measure of scientific correctness and we will illustrate in Sections 6,7 the thorny
issues raised by such a decomposition. For now, we do abide by plastic tradition
and assume a multiplicative decomposition of the deformation gradient (denoted
henceforth by F ) into an elastic part (denoted henceforth by E) and a plastic part
(denoted henceforth by P ) as manifestation of the composition, in no particular
order, of the elastic and plastic deformations.

First and foremost common sense dictates that, in the absence of any kind of
plastic deformation, finite elasto-plastic behavior should be purely elastic. If so,
then the deformation should be such that F = E whenever P = I. Since classical
hyper-elasticity is based on the consideration of an energy

W : M3×3 → R̄

which only depends on F , then one should view E as being endowed with the same
geometric properties as F , i.e., as a linear mapping from the tangent space of the
undeformed configuration into that of the deformed configuration. Consequently,
either F = EP in which case P is a linear mapping from the tangent space of
the undeformed configuration into itself, or F = PE, in which case P is a linear
mapping from the tangent space of the deformed configuration into itself. In both
cases, F should preserve orientation, and, in the absence of plastic deformation, so
should E, so that we may as well assume that detP and detE > 0.

In either situation the free energy density of the system – in an isothermal setting
– should be of the form W(E); it should also respect material frame indifference,
that is

(2.1) W(E) = Ŵ(ETE) where Ŵ : M3×3
s → R̄.

We will further assume henceforth that W and Ŵ are continuous and C1 on their
domain.

Remark 2.1. We readily concede that our view of material frame indifference may
be too naive and that an intermediate configuration should be part and parcel of
our model. However, we have failed in our effort to locate a clear articulation of
that viewpoint and of its impact on frame indifference in the existing literature. ¶

Then, the advent of plasticity should be conditioned by a threshold on the (sym-
metric) Cauchy stress (henceforth denoted by C) because it is the stress that is
directly measurable. So classically, one should impose that C ∈ K, where K is a
convex (possibly compact) subset of M3×3

s with 0 ∈ K.
If so, then one should strive to write the mechanical dissipation (denoted hence-

forth by D) in the form

D = C · T
for some quantity T . According to Clausius-Duhem’s inequality, D ≥ 0, at least
in the absence of thermal dissipation. (This is a mere re-statement of the second
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law of thermodynamics.) If we adopt, as it is commonly done in plasticity, the
normality rule, then, whatever T turns out to be, the resulting flow rule should be

(2.2) T ∈ NK(C)

or, equivalently, its Biot form

(2.3) C ∈ ∂H(T ) with H(T ) := sup{T · C ′ : C ′ ∈ K}.

Also, if metals or crystalline solids are being primarily investigated, then the
plastic deformation should be isochoric throughout the evolution, hence the con-
straint

(2.4) detP = 1

should be satisfied at all times (see e.g. [33] and [25, Section 11.19]).
Now we remark that, since by (2.4) detP > 0, the polar decomposition permits

to decompose P as
P = QP ′QTR

or, equivalently as
P = R̄Q̄P ′′Q̄T ,

where R,Q, R̄, Q̄ ∈ SO(3) and P ′, P ′′ are diagonal matrices with positive entries in
some preset orthonormal basis {~ei : i = 1, 2, 3}. So, setting R′ := QTR,Q′ := R̄Q̄,
the decomposition F = EP also reads as

F = EQP ′R′ = EQ′P ′′Q̄T

while the decomposition F = PE also reads as

F = QP ′R′E = Q′P ′′Q̄TE.

Because of frame indifference, W(Q̄TE) = W(R′E) = W(E), so that the de-
composition F = PE can read, with no prejudice, as

F = QP ′E, with P ′ diagonal.

Such is not the case for the decomposition F = EP because W(EQ) =W(EQ′) =
W(E) only when W is isotropic.

In the absence of isotropy, the starting point of our analysis is the following
decomposition of the deformation gradient F

(2.5) F = QPE, with


Q ∈ SO(3)

P ∈ P,
E ∈ E,

where P and E were defined in the introduction (see 1.1).
This is the decomposition that we advocate in the next section. As seen from

the above developed argument this reverse multiplicative decomposition (in the
terminology of [25, Section 11.19]) is favored by the polar decomposition.

Firstly, the decomposition in (2.5) will allow us to write Clausius-Duhem’s in-
equality in terms of the Cauchy stress (or, in all fairness, in terms of the Kirchhoff
stress in the simplified model in Section 5). As described in Remark 4.9, this does
not seem to be possible if the “standard” multiplicative decomposition F = EP
is used. Then, although the reverse decomposition is undoubtedly less frequently
encountered in the classical literature on finite plasticity (see however [25, Section
11.19] and references therein), it will result in a much more natural dissipation
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functional, one that does not require the introduction of a dissipation distance and
does not create a potential “dissipation gap” (see Remark 4.9).

Remark 2.2. In the setting of crystal plasticity, the plastic deformation is usually
restricted to a finite number of allowed slip directions, resulting in a model where
the decomposition is indeed F = EP , with P of the form I+

∑
i∈I γisi⊗mi where

I is finite and |si| = |mi| = 1, si ·mi = 0, i ∈ I. This kind of model is outside our
purview. ¶

We will see in the next section the impact of decomposition (2.5) and observe
in Remark 3.3 that there is no benefit in adopting the “classical” multiplicative
decomposition even in an isotropic setting.

3. A rational model for elasto-plastic evolution

As motivated in Section 2 above, the deformation gradient is decomposed as in
(2.5). The resulting decomposition immediately suggests that both P and Q be
viewed as internal variables.

We now engage in the classical thermo-mechanical derivation of the ensuing
model with, as is customary in such derivations, no regard for the regularity of the
fields. In other words, we assume that all fields have sufficient smoothness so that
all required differentiations and changes of variables are licit. We refer to e.g. [21],
[29] for a detailed exposition of the fundamentals of that derivation.

First we should rewrite W as a function all variables. Accordingly, define

W ′(Q,P, F ) :=W(P−1QTF ).

Then, the reversible stress, i.e., the first Piola-Kirchhoff stress (denoted henceforth
by Π) is given by ∂W ′/∂F (Q,P, F ). We obtain

(3.1) Π = QP−1DW(E),

so that, if ρ0 denotes the mass density, f the density of body forces (both in the
undeformed configuration), while ϕ denotes the transformation field, the balance
of momentum reads as

(3.2) ρ0
∂2ϕ

∂t2
− div [QP−1DW(E)] = f.

Remark 3.1. Throughout this section, we will be computing the thermodynamic
forces (see e.g. [26, Section 1.5]) associated with P,Q as if P,Q actually both
spanned all of M3×3

s . Doing so results in an expression which should then be
projected onto the tangent space to the manifolds P and SO(3), respectively. But
that last step is irrelevant because the thermodynamic forces only appear in the
expressions

−∂W
′

∂P
(Q,P, F ) · Ṗ , ∂W ′

∂Q
(Q,P, F ) · Q̇.

Since Ṗ , Q̇ belong to the tangent space to P and SO(3) respectively, it suffices
to compute −∂W ′/∂P , ∂W ′/∂Q as we propose to do, thereby disregarding the
constraints. For simplicity, we still label thermodynamic forces the results of those
computations. ¶
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The thermodynamic force (“back stress”, denoted henceforth by B) associated
with P is given in turn by −∂W ′/∂P (Q,P, F ). We obtain

(3.3) B = −∂W
′

∂P
(Q,P, F ) = P−1DW(E)ET .

The thermodynamic force ( “spin stress”, denoted henceforth by S) associated
with Q is given by −∂W ′/∂Q(Q,P, F ). We obtain

(3.4) S = −QPE[DW(E)]TP−1.

The Cauchy stress C (denoted henceforth by C) is given in terms of Π through
the (inverse Piola transform) as

C =
1

detF
ΠFT .

We obtain

(3.5) C =
1

detE
QP−1DW(E)ETPQT .

Because of frame indifference (see (2.1))

DW(E) = 2EDsŴ(ETE),

where

DsŴ(G) :=
(DŴ(G) + DŴ(G)T )

2

is the symmetrized derivative of Ŵ . Then

C =
2

detE
QP−1EDsŴ(ETE)ETPQT =

1

detE
QP−1APQT ;

in the relation above, the symmetric matrix A is defined by

(3.6) A := 2EDsŴ(ETE)ET (= DW(E)ET ).

Remark that, although A is symmetric, C is not automatically symmetric! But
the symmetry of C must be enforced because it is the direct consequence of the
balance of moment of momentum.

Remark 3.2. This apparent lack of a priori symmetry of the Cauchy stress tensor
is, to our knowledge, rather unusual. In the case of hyperelasticity that symmetry
is a direct consequence of frame indifference because the Cauchy stress tensor then
reduces to A given in (3.6). ¶

In any case, we should impose the symmetry of P−1AP , or still

AP 2 = P 2A.

Since P 2 is diagonal the above commutativity property is false unless A maps every
eigenspace of P into itself. Thus, we conclude that the following hard constraint
must be satisfied
(3.7)
A = DW(E)ET is such that every eigenspace of P is mapped into itself by A.

On the other hand, expressing B,S in terms of C yields

(3.8)

{
B = detE QTCQP−1

S = −detE CTQ.
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In the absence of thermal dissipation, Clausius-Duhem’s inequality reduces to

(3.9) B · Ṗ + S · Q̇ ≥ 0,

or still, using (3.8),

(3.10) detE QTCQ · (ṖP−1 − Q̇TQ) ≥ 0.

(Note that the derivation of (3.10) has not used the symmetry of C).
Now, as already noted, detP ≡ 1 throughout the evolution, so that, by time

differentiation,

(3.11) tr ṖP−1 = 0.

Similarly, since Q ∈ SO(3), Q̇TQ+QT Q̇ = 0, so

(3.12) Q̇TQ is skew-symmetric and tr Q̇TQ = 0.

In view of (3.11) and (3.12), inequality (3.10) reads as

(3.13) detE QTCDQ · (ṖP−1 − Q̇TQ) ≥ 0.

We now appeal to the symmetry of C, hence of CD. Because of (3.12), (3.13)
becomes

(3.14) QTCDQ · detE ṖP−1 ≥ 0.

In other words, the variable Q which incorporates both rotations of the frame and
plastic rotations, does not contribute to the dissipation.

Remark 3.3. Assuming for an instant thatW is isotropic, we remarked in Section
2 that we could then adopt the reverse decomposition F = EPQ (the “classical”
decomposition in the relevant literature) in lieu of (2.5). Then, proceeding as above,
we would end up with

Π = DW(E)P−1Q

B = ETDW(E)P−1

S = −P−1DW(E)TEPQ

C =
2

detE
DW(E)ET =

1

detE
EDsŴ(ETE)ET .

Consequently, the symmetry of the Cauchy stress tensor C would be secured. How-
ever, the term S · Q̇ in the dissipation would then become

−P−1DW(E)TEPQ · Q̇ = −P−1ETDsW̃ (EET )EP · Q̇QT ,

with W(E) = W̃(EET ) where W̃ : M3×3
s → R̄. Setting

D := ETDsW̃(EET )E,

we would conclude, in analogy with (3.7), that D must map every eigenspace of

P into itself, provided that we want to cancel the term S · Q̇ whenever P 6= I.
So, even in an isotropic setting, the EPQ-decomposition does not seem to alle-

viate the burden of a hard constraint of the type (3.7). ¶
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As stated in Section 2, a hallmark of plasticity should be the existence of a
compact, convex set K containing 0 to which C, or more precisely here CD, should
belong. We thus impose that

(3.15) CD ∈ K ⊂M3×3
D .

That set should be frame indifferent, since C is so. Hence K = QTKQ,∀Q ∈ SO(3).
The associated support function H defined as

(3.16) H(T ) := sup{C ′ · T : C ′ ∈ K}
will also be invariant under the action of SO(3), that is

H(QTQT ) = H(T ),∀Q ∈ SO(3).

Remark, for future use, that, in view of the convex, continuous and positively
one-homogeneous character of H, the following properties are easily checked:

(3.17)
∂H(0) = K

∂H(M) ⊂ K, for every M ∈M3×3
D .

By (3.14) the normality rule (2.3) then reads as

(3.18) QTCDQ ∈ ∂H(detE ṖP−1)

(or, equivalently, detE ṖP−1 ∈ NK(QTCDQ)). If we recall expression (3.5) for the
Cauchy stress C and (3.7) we thus finally get

1

detE
AD ∈ ∂H(detE ṖP−1),

or still

(3.19)
1

detE
[DW(E)ET ]D ∈ ∂H(detE ṖP−1).

Summing up and recalling (2.5),(3.2),(3.17),(3.19), the elasto-plastic evolution reads
as

Model 3.4 (Elasto-Plastic Evolution). The transformation field ϕ characterizing
the evolution, for a given mass density ρ0 and a given density of loads f satisfies

∇ϕ =


QPE

P diagonal in a fixed orthonormal basis

with > 0 eigenvalues

detP = 1, detE > 0

(3.20)

ρ0
∂2ϕ

∂t2
− div [QP−1DW(E)] = f(3.21)

1

detE
[DW(E)ET ]D ∈ ∂H(detE ṖP−1)(3.22)

{
P = I or

DW(E)ET = EDsŴ(ETE)ET maps every eigenspace of P into itself.

(3.23)

Of course, this system should be complemented with an appropriate set of initial
and boundary conditions. At this point, we merely wish to draw attention to the
role of the rotation Q: it rotates the corresponding Piola-Kirchhoff stress so as to
ensure that the equations of motion – the equilibrium equations in a quasi-static
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setting – are satisfied. Clearly, frame indifference is satisfied by the model because
a pre-multiplication of the deformation gradient by a rotation Q′ will result (see
(3.5)) in changing the Cauchy stress C into Q′CQ′T .

The next section will demonstrate that, upon assuming enough smoothness of
all relevant fields, the evolution described in Model 3.4 can be rephrased – when in
a quasi-static setting – as a variational evolution.

Remark 3.5. The evolution obtained above is, as already mentioned, partially
characterized by a set of admissible Cauchy stresses K, at least through their de-
viatoric part. If instead, we a priori privilege a different measure of stress, to wit,
the Kirchhoff stress K defined as

K = detF C = detE C,

then a different elasto-plastic evolution is obtained. The difference lies in the dis-
appearance of the term detE(t) from the flow rule (3.22). That equation thus
becomes

[DW(E)ET ]D ∈ ∂H(ṖP−1),

all other equations remaining unchanged.
It will be seen later in Remark 4.5 that the resulting evolution can be equally

rephrased, when in a quasi-static setting, as a variational evolution. That evolution
will be subsequently analyzed in Section 5 because it proves mathematically more
palatable than that generated by the Cauchy stress, precisely because of the absence
of the determinant term; see the beginning of Section 5.

Of course, this is not entirely satisfactory from our standpoint since Cauchy was
part of our predicates in Section 2. We duly acknowledge this while pointing out
that imposing a yield limit on the Kirchhoff stress is common occurrence in the
literature on plasticity [38, Section 18.2.8]. ¶

4. Quasi-static evolution – A variational evolution

In this section, we specialize the variational evolution of Model 3.4 to the quasi-
static case, which amounts to letting the term ρ0∂

2ϕ/∂t2 drop out of (3.21).
We propose to demonstrate that a blatant disregard of regularity issues allows

one to reformulate that evolution within the framework advocated by A. Mielke
[35] for rate independent quasi-static evolutions. In a nutshell, such evolutions
are characterized by a global minimality principle for the state variables at each
time, together with an energy conservation statement. Such a formulation has
been quite successful in handling a variety of rate independent evolutions ranging
from fracture evolution to damage, small strain elasto-plasticity, and even different
models of finite-strain elasto-plasticity.

The global minimality principle alluded to in the previous paragraph is fully jus-
tified whenever the energy to be minimized is convex; such is the case in e.g. small
strain elasto-plasticity (see [9]). However, in most settings convexity is lacking.
Then the argument that restricts the variational evolution to global minimizers
should be viewed as a convenient mathematical expedient to secure existence of
such an evolution; such is the case in e.g. fracture (see [12, 17]). In the absence of
convexity, the equivalence between the original evolution system and the variational
evolution is usually established upon replacing global minimality by an adequate
notion of stationarity (see e.g. [4] still in the context of fracture).
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In the current setting, convexity will be lacking so that stationarity will replace
global minimality. However, for simplicity sake, we will illustrate the derivation as
if the global minimality principle still held true.

Proposition 4.1 (Variational Evolution). In the absence of kinetic energy, the
elasto-plastic evolution of Model 3.4, complemented by the boundary conditions

ϕ = w(t) on Γd ⊂ Ω, with w(t) extended to all of R3(4.1)

Π(t)ν = g(t) on Γt := ∂Ω \ Γ̄d,

(where Π(t) is the first Piola-Kirchhoff stress defined in (3.1) and Γd is an open
subset of ∂Ω) is satisfied by any solution of the following variational evolution:

Find (ϕ(t), E(t), P (t), Q(t)) with

• P (t) ∈ P,
• Q(t) ∈ SO(3);
• ∇ϕ(t) = Q(t)P (t)E(t);
• ϕ(t) = w(t) on Γd;

and such that, setting logP (t) =: L(t);

(Global Minimality) For all t ≥ 0’s, the field (E(t), P (t)) is a global minimizer of∫
Ω

W(E′)dx−
∫

Ω

f(t) · ϕ′dx−
∫

Γt

g(t) · ϕ′dH2 +

∫
Ω

H(detE(t)(L′ − L(t)))dx,

among all (ϕ′, E′, P ′, Q′) with
∇ϕ′ = Q′P ′E′, L′ := logP ′,

ϕ′ ≡ w(t) on Γd

P ′ ∈ P,
Q′ ∈ SO(3);

(Energy Conservation)

d

dt

{∫
Ω

W(E(t)dx−
∫

Ω

f(t) · ϕ(t)dx−
∫

Γt

g(t) · ϕ(t)dH2

}
+∫

Ω

H(detE(t)L̇(t))dx =

∫
Ω

Q(t)P−1(t)DW(E(t)) · ∇ẇ(t)dx−∫
Ω

ḟ(t) · ϕ(t)dx−
∫

Γt

ġ(t) · ϕ(t)dH2 −
∫

Ω

f(t) · ẇ(t)dx−
∫

Γt

g(t) · ẇ(t)dH2;

Remark 4.2. Note that we do not impose the constraint (3.23). As will be seen
in the proof below, this is a consequence of Global Minimality. ¶

Remark 4.3. Because both P (t) and the test plastic strains P ′ are isochoric (their
determinants is identically 1), L(t), as well as L′ are in M3×3

D , so that their presence
in a term involving the dissipation potential H is meaningful. ¶

Remark 4.4. In this formulation, a compatible initial condition for the elasto-
plastic evolution of Model 3.4 is one which satisfies the global minimality principle
at time t = 0. ¶
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Remark 4.5. In the context of Remark 3.5, the analogue of Proposition 4.1 holds
at the expense of dropping the term detE(t) from both the Global Minimality and
the Energy Conservation statements. ¶

The Energy Conservation of Proposition 4.1 can be integrated over the time
interval [0, t]. It becomes∫

Ω

W(E(t)dx−
∫

Ω

f(t) ·ϕ(t)dx−
∫

Γt

g(t) ·ϕ(t)dH2 +

∫ t

0

∫
Ω

H(detE(s)L̇(s))dxds

=

∫ t

0

∫
Ω

Q(s)P−1(s)DW(E(s)) · ∇ẇ(s)dxds−
∫ t

0

∫
Ω

ḟ(s) · ϕ(s)dxds−∫ t

0

∫
Γt

ġ(s) · ϕ(s)dH2ds−
∫ t

0

∫
Ω

f(s) · ẇ(s)dxds−
∫ t

0

∫
Γt

g(s) · ẇ(s)dH2ds.

The term
∫ t

0

∫
Ω

H(detE(s)L̇(s))dxds in the expression above presupposes some type
of regularity in time of L(t) = logP (t).

Define, for t1, t2 ∈ [0, T ], with t1 ≤ t2, the total dissipation as

DissH(t1, t2) :=

lim
δ↘0

{ Nδ∑
i=1

∫
Ω

detE(sδi )H(L(sδi )− L(sδi−1)) dx : {sδi } finite partitions of [t1, t2];

sup{sδi − sδi−1} ≤ δ
}
.

Then, using the positive one-homogeneity of H, the term
∫ t

0

∫
Ω

H(detE(s)L̇(s))dxds
in the Energy Conservation can be unambiguously replaced by DissH(0, t), provided
that all involved fields are sufficiently smooth, as demonstrated in [10, Lemma 8.2];
the value of DissH(t1, t2) does not depend upon the particular sequence of partitions
{sδi }.

We can restate the variational evolution in Proposition 4.1 as a definition which,
if satisfied by a quadruplet (ϕ(t), E(t), P (t), Q(t)) will ensure satisfaction of the
elasto-plastic evolution of Model 3.4 in the absence of kinetic energy and for the
boundary conditions (4.1).

Definition 4.6. A variational evolution (ϕ(t), E(t), P (t), Q(t)) is defined for every
t ≥ 0 as

• P (t) ∈ P,
• Q(t) ∈ SO(3);
• ∇ϕ(t) = Q(t)P (t)E(t);
• ϕ(t) = w(t) on Γd;

and is such that, setting logP (t) =: L(t),

(Global Minimality) For all t ≥ 0, the field (E(t), P (t)) is a global minimizer of∫
Ω

W(E′)dx−
∫

Ω

f(t) · ϕ′dx−
∫

Γt

g(t) · ϕ′dH2 +

∫
Ω

H(detE(t)(L′ − L(t)))dx,
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among all (ϕ′, E′, P ′, Q′) with
∇ϕ′ = Q′P ′E′, L′ := logP ′,

ϕ′ ≡ w(t) on Γd

P ′ ∈ P
Q′ ∈ SO(3);

(Energy Conservation)?∫
Ω

W(E(t)dx−
∫

Ω

f(t) · ϕ(t)dx−
∫

Γt

g(t) · ϕ(t)dH2 + DissH(0, t) =

∫ t

0

∫
Ω

Q(s)P−1(s)DW(E(s)) · ∇ẇ(s)dxds−
∫ t

0

∫
Ω

ḟ(s) · ϕ(s)dxds

−
∫ t

0

∫
Γt

ġ(s) · ϕ(s)dH2ds−
∫ t

0

∫
Ω

f(s) · ẇ(s)dxds−
∫ t

0

∫
Γt

g(s) · ẇ(s)dH2ds.

Remark 4.7. Once again, a definition of a variational evolution can be readily
derived in the context of Remarks 3.5, 4.5 at the expense of dropping detE(t) from
the Global minimality statement, and also of redefining DissH as

DissH(t1, t2) := sup
{si} finite partitions of [t1,t2]

{ Nδ∑
i=1

∫
Ω

H(L(si)− L(si−1)) dx
}
,

which is a more classical definition of the dissipation. ¶

In all fairness, the legitimacy of the substitution of the dissipation term in the
energy conservation is doubtful at present because the required smoothness of the
fields E(t), L(t) is lacking, even in the regularized context of Section 5 below.

Proof of Proposition 4.1. Because P (t), P ′ are diagonal with only positive eigen-
values, one can trivially define their logarithms L(t), L′.

Then, clearly,

(4.2) Ṗ (t)P−1(t) = P−1(t)Ṗ (t) = L̇(t).

Step 1- Consequences of global minimality: Assume global minimality and choose
ϕ′ = ϕ(t), E′ = P̄−1E(t), P ′ = P (t)P̄ , Q′ = Q(t), with P̄ ∈ P. Then,

(4.3)

∫
Ω

W(E(t))dx ≤
∫

Ω

W(P̄−1E(t))dx+

∫
Ω

H(detE(t) log P̄ )dx.

Take P̄ = Q” exp(χBεM)Q”T with M ∈ M3×3
D , B an arbitrary Borel set and

Q” ∈ SO(3) such that Q”MQ”T is diagonal in the same basis as P (t). Then,

log P̄ = εχBQ”MQ”T + o(ε).

From (4.3), we obtain

0 ≤
∫
B

DW(E(t)) · [Q” exp(−εM)Q”T − I]E(t) dx+o(ε)+ε

∫
B

H(detE(t)Q”MQ”T ) dx,

that is,

0 ≤
∫
B

DW(E(t)) ·Q”[−εM ]Q”TE(t) dx+ o(ε) + ε

∫
B

H(detE(t)Q”MQ”T ) dx.
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Choosing N := detE(t)Q”MQ”T , dividing by ε > 0 and letting ε tend to 0 yields

(4.4)

∫
B

1

detE(t)
DW(E(t))E(t)T ·N dx ≤

∫
B

H(N) dx,

which is equivalent to

(4.5)
1

detE(t)
[DW(E(t)ET (t)]D ∈ ∂H(0) = K.

Remark that we cannot obtain the equality in (4.4) because we are not allowed to
choose ε < 0 since H is only positively one-homogeneous.

Choose now

ϕ′ = ϕ(t) + εψ, ψ ∈ C∞c (Ω ∪ Γt),

and consider the decomposition

∇ϕ′ = Q(t)P (t)[E(t) + εP−1(t)QT (t)∇ψ].

We are at liberty to take

E′ = E(t) + εP−1(t)QT (t)∇ψ

without changing P (t). Inserting the test quadruplet (ϕ′, E′, P (t), Q(t)) into global
minimality yields∫

Ω

W(E(t))dx ≤∫
Ω

W(E(t) + εP−1(t)QT (t)∇ψ)dx− ε
{∫

Ω

f(t) · ψdx+

∫
Γt

g(t) · ψdH2

}
,

that is

− ε
{∫

Ω

DW(E(t)) · P−1(t)QT (t)∇ψ dx−
∫

Ω

f(t) · ψdx−
∫

Γt

g(t) · ψdH2

}
+ o(ε) ≤ 0,

or still∫
Ω

Q(t)P−1(t)DW(E(t)) · ∇ψ dx−
∫

Ω

f(t) · ψdx−
∫

Γt

g(t) · ψdH2 = 0.

Choosing ψ ∈ C∞c (Ω) immediately yields the equilibrium equation (3.21) (without
the acceleration term), and then choosing ψ ∈ C∞c (Ω∪Γt) and recalling (3.1) yields
the Neumann boundary condition

(4.6) Π(t)ν = g(t) on Γt.

Finally, take ζ to be an arbitrary element of C∞c (Ω) and S to be an arbitrary
skew-symmetric matrix and note that exp εζS ∈ SO(3). Choose ϕ′ = ϕ(t), E′ =
P−1(t) exp (−εζS)P (t)E(t), P ′ = P (t), Q′ = Q(t) exp (εζS). Then, inserting the
test quadruplet (ϕ′, E′, P (t), Q′) into global minimality yields∫

Ω

W(E(t))dx ≤
∫

Ω

W(P−1(t) exp (−εζS)P (t)E(t))dx,

that is

ε

∫
Ω

(
P−1(t)DW(E(t))ET (t)P (t) · S

)
ζdx− o(ε) ≤ 0,
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or still, upon localizing,

(4.7) P−1(t)DW(E(t))ET (t)P (t) · S = 0, ∀S skew-symmetric.

Relation (4.7) implies that P−1(t)DW(E(t))ET (t)P (t) = P−1(t)A(t)P (t) (see
(3.6)) is symmetric, hence, reproducing the argument leading to (3.7), that (3.23)
holds true.

Step 2- Consequences of energy conservation: Using (3.21), (4.6), the following string
of equalities holds true:∫

Ω

DW(E(t)) · Ė(t)dx+

∫
Ω

H(detE(t)L̇(t))dx =∫
Ω

Q(t)P−1(t)DW(E(t)) ·Q(t)P (t)Ė(t)dx+

∫
Ω

H(detE(t)L̇(t))dx =∫
Ω

Q(t)P−1(t)DW(E(t)) · ∇ϕ̇(t)dx−
∫

Ω

Q(t)P−1(t)DW(E(t))·

(Q̇(t)P (t) +Q(t)Ṗ (t))E(t)dx+

∫
Ω

H(detE(t)L̇(t))dx =∫
Ω

Q(t)P−1(t)DW(E(t)) · ∇ẇ(t)dx+

∫
Γt

g(t) · (ϕ̇(t)− ẇ(t))dH2+∫
Ω

f(t) · (ϕ̇(t)− ẇ(t))dx−
∫

Ω

Q(t)P−1(t)DW(E(t)) · (Q̇(t)P (t) +Q(t)Ṗ (t))E(t) dx

+

∫
Ω

H(detE(t)L̇(t)) dx.

But, according to energy conservation,∫
Ω

DW(E(t)) · Ė(t)dx+

∫
Ω

H(detE(t)L̇(t))dx =∫
Ω

Q(t)P−1(t)DW(E(t)) · ∇ẇ(t)dx+

∫
Ω

f(t) · (ϕ̇(t)− ẇ(t))dx

+

∫
Γt

g(t) · (ϕ̇(t)− ẇ(t)dH2.

Comparing the two expressions above, we conclude that∫
Ω

Q(t)P−1(t)DW(E(t)) · (Q̇(t)P (t) +Q(t)Ṗ (t))E(t)dx(4.8)

=

∫
Ω

H(detE(t)L̇(t))dx.

Recalling definition (3.6),

Q(t)P−1(t)DW(E(t)) · Q̇(t)P (t)E(t) = P−1(t)A(t)P (t) ·QT (t)Q̇(t).

But, according to the already proved property (3.23), A(t) commutes with P (t),
so that the relation above becomes

Q(t)P−1(t)DW(E(t)) · Q̇(t)P (t)E(t) = A(t) ·QT (t)Q̇(t)
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and, since the left hand-side of the dot product in the right-hand side is symmet-
ric while its right hand-side is skew-symmetric, that expression is identically null.
Thus, (4.8) becomes∫

Ω

Q(t)P−1(t)DW(E(t)) ·Q(t)Ṗ (t)E(t)dx =

∫
Ω

H(detE(t)L̇(t))dx,

or still, since tr P−1(t)Ṗ (t) = 0,

(4.9)

∫
Ω

[DW(E(t))ET (t)]D · P−1(t)Ṗ (t)dx =

∫
Ω

H(detE(t)L̇(t))dx.

Relation (4.5) implies in particular that

1

detE(t)
[DW(E(t))ET (t)]D · detE(t)L̇(t) ≤ H(detE(t)L̇(t)).

Since L̇(t) = Ṗ (t)P−1(t) = P−1(t)Ṗ (t), this also reads as

(4.10)
1

detE(t)
[DW(E(t))ET (t)]D · detE(t)Ṗ (t)P−1(t) ≤ H(detE(t)L̇(t)).

Thus, in view of (4.9), inequality (4.10) is an equality, that is

1

detE(t)
[DW(E(t))ET (t)]D · detE(t)Ṗ (t)P−1(t)) = H(detE(t)L̇(t)).

Convex duality then permits to conclude, in view of (4.5), that (3.22) is satisfied.
�

Remark 4.8. As already mentioned at the onset of this section, the variational
evolution (if it exists) has been shown to satisfy (in the absence of kinetic energy) the
elasto-plastic evolution of Model (3.4) under the assumption of global minimality.
In lieu of the latter property, a proper notion of stationarity would yield a similar
result, although we do not wish to elaborate further on that notion in this work.¶

Remark 4.9. (Mielke’s model) To our knowledge, A. Mielke [32] was the first to
establish that finite elasto-plasticity can be reformulated – in a quasi-static setting
– as a variational evolution. In this remark we propose to contrast our approach
with that which he subsequently developed, together with his collaborators.

In his formulation (see e.g. [33, 34]), the adopted multiplicative decomposition
is F = EP−1, and not F = PE as in the present work. (The consideration of P−1

in lieu of P is purely for notational convenience.)
In that setting, it is easily seen that the Cauchy stress tensor is given by

C =
1

detE
DW(E)ET ,

while the back stress is given by

B = −P−TETDW(E).

Therefore, Clausius-Duhem’s inequality reads as

ETDW(E) · P−1Ṗ ≥ 0.

The author chooses to constrain the tensor PTB = ETDW(E) to belong to some
convex set K, so that his flow rule is of the form

P−1Ṗ ∈ NK(ETDW(E)),
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or equivalently,
ETDW(E) ∈ ∂H(P−1Ṗ ),

with notation that should be clear to the reader.
The choice of the decomposition F = EP−1 leaves no choice as to the stress

that should be constrained. In particular, it does not seem possible to marry the
decomposition with a constraint on the Cauchy stress, unless one can accommodate
a condition of the form CD ∈ ∂H(EP−1ṖET detE), whereas, in our setting, the

condition is QCDQ
T ∈ ∂H(ṖP−1), as immediately deduced from (3.18) and from

the 0 -homogeneous character of ∂H.
Further, the lack of commutativity between P−1 and Ṗ prevents the use of

a variational formulation for the resulting evolution. The author has to modify
the dissipation so as to introduce a dissipation functional with the required sub-
additivity and homogeneity properties. Specifically, he introduces the dissipation
potential –which he calls the induced dissipation distance – as
(4.11)

D(P, P ′) := inf

{∫ 1

0

H(P−1(s)Ṗ (s))ds : P smooth on [0, 1];P (0) = P, P (1) = P ′
}
,

and it is for that new dissipation potential that he proposes a variational evolu-
tion. See [32, Section 2]. In that formulation the total energy dissipated over the

time interval [0, t] – that is
∫ t

0

∫
Ω

H(detE(s)L̇(s))dxds if integrating in time the en-
ergy conservation in Proposition 4.1 – has to be replaced by a total variation type
expression, namely

sup

 ∑
i=0,...,p

∫
Ω

D(P (ti−1), P (ti))dx : {ti} with t0 = 0 ≤ t1.... ≤ tp = t


A solution to such a variational evolution may not satisfy the corresponding

elasto-plastic evolution precisely because of this dissipation gap introduced through
the infimum in the definition of D. ¶

In view of the tremendous successes of variational evolutions for a wide variety of
rate independent evolutions (at least when global minimality is enforced), it would
be tempting to attempt a proof of the existence of evolution satisfying the criteria
put forth in Proposition 4.1 (or, alternatively, in Remark 3.5). Unfortunately, this
is a forbidding task on two grounds. On the one hand the energy to be minimized
is the sum of two non-quadratic energies which would be a challenge even in the
context of small strain elasto-plasticity. On the other hand, the dissipation is
not convex because of the presence of the logarithmic term; further it has super-
linear growth at 0 and sub-linear growth at ∞. Consequently, even the functional
framework – that is that which ensures bounded energies and compactness of the
minimizing sequences – is unclear to us at this point.

The model advocated in e.g. [32, 33, 34] was later regularized in [28] through
the introduction of both a plasticity term and a gradient plasticity term in the
energy that, together, enforce compactness of the plastic strains associated with
the minimizing sequences. Schematically, in the simplest setting, the free energy
becomes W(E) +Whard(P ) + |∇P |r, r > 1. The energy Whard is often referred to
as a hardening energy while the plastic gradient term is called just that, a plastic
gradient. An existence theorem can then be proved under adequate assumptions on
the energy densityW and on the induced dissipation distance D of Remark 4.9; see
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[28, Theorem 3.1]. In the next section we quickly show that adding regularization
terms which enforce compactness of the plastic strains and of the rotations produces
a similar result, at least in the setting of Remarks 3.5, 4.5, 4.7.

5. A regularized Variational Evolution

As previously announced, this section is devoted to a regularized model for which
Sobolev-compactness of the plastic strains is immediate.

Unfortunately the model for which existence will be proved also violates one of
the basic requirements introduced in Section 2, namely that the yield threshold
be formulated in terms of the Cauchy stress. In what follows that threshold is
formulated in terms of the Kirchhoff stress as in Remark 3.5. We do so because
the presence of the term detE(t) in the dissipation makes the analysis intractable.
The energy conservation statement in Definition 4.6 seems unattainable for lack of
any kind of time estimate on logP .

We list the constitutive assumptions under which existence of a variational evo-
lution can be ascertained. They should be thought of as similar to the assumptions
in [20, Section 5] and of those in [31, Section 2], themselves inspired from [2, Section
2.4]. Our goal in this section is illustrative, so that, rather than strive for the ut-
most generality, we put forth the simplest constitutive assumptions, most notably
on growth or coercivity, that will secure the desired result.

The body under consideration occupies a bounded Lipschitz domain Ω ⊂ R3.
We take p with

3 < p <∞,
so that W 1,p(Ω) is compactly imbedded into C0(Ω̄).

The elastic energy: W : M3×3 → [0,∞] is polyconvex and satisfies, for all F ∈M3×3
+ ,

H1. W ∈ C1(M3×3
+ ), W ≡∞ on M3×3 \M3×3

+ ,
H2. W(Id) = 0;
H3. W(RF ) =W(F ) ∀R ∈ SO(3);
H4. W(F ) ≥ c1distp(F ;SO(3));
H5. |DW(F )FT | ≤ c2(W(F ) + 1);
H6. There exists a modulus of continuity ω such that, for all N ∈M3×3

+ ,

|DW(F )FT −DW(NF )(NF )T | ≤ ω(‖N − Id‖)(W(F ) + 1).

Here c1, c2 are positive constants.

Remark 5.1. There are indeed classical energy densities, like those associated with
Ogden materials, that satisfy H1-H6, as demonstrated in [20, Remarks 5.1, 5.3]. ¶

The hardening functional: Exactly as in [31], we consider a severely constrained
model of kinematic hardening (kinematic, so as not to introduce yet an additional
internal variable). The hardening functional Whard : R3

+ → [0,∞] is of the form

Whard(P ) :=

{
W̃hard(P ) for every P ∈ V,

+∞ otherwise.

The constraint is that V should be a compact subset of R3
1 that contains 13 as an

interior point. We also take the map W̃hard : R3
1 → [0,∞) to be continuous.
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In particular the hypotheses on V imply the existence of a constant c such that

|P |+ |P−1| ≤ c for every P ∈ V,(5.1)

|P − 13 | ≥
1

c
for every P ∈ R3

1 \V.(5.2)

The dissipation functional : H : M3×3
D → [0,+∞) is a convex, positively one-

homogeneous function such that, for some 0 < r < R and any F ∈M3×3
D ,

(5.3) r|F | ≤ H(F ) ≤ R|F |.

We also define, for any L : [0, T ]→ L1(Ω;R3) and 0 ≤ t1 ≤ t2 ≤ T ,

Var(t1, t2;L) := sup
{si}

{ N∑
i=1

∫
Ω

|L(si)− L(si−1)| dx : s0 = t1 < s1 < .... < sN = t2

}
.

The boundary conditions : On an open subset Γ of ∂Ω, we impose a Dirichlet
boundary condition g : [0, T ] × R3 → R3 where g(t, ·) : R3 → R3 is a global
diffeomorphism satisfying

g ∈ C2([0, T ]× R3; R3),(5.4)

‖∇g‖L∞ ≤ C, ‖∇ġ‖L∞ ≤ C, ‖∇g̈‖L∞ ≤ C, ‖(∇g)−1‖L∞ ≤ C.(5.5)

Remark 5.2. Note that, for simplicity sake, g is the only “loading process” for the
system. Body or surface forces could be readily incorporated provided that they
are endowed with adequate regularity.

Also, we have made no attempt to optimize the regularity assumptions on g. ¶

The deformations: The deformations ϕ : [0, T ] × Ω → R3 can then be decomposed
as follows:

ϕ(t, x) = g(t, y(t, x)),

with

y ∈ Y := {y ∈W 1,p(Ω;R3) : ybΓ= id}.
Hence in particular (see e.g. [36, Remark 2.2 and Proposition 2.2]),

(5.6) ∇ϕ(t, x) = ∇g(t, y(t, x))∇y(t, x).

We define

(5.7) A :=
{

(y,Q, P ) ∈ Y ×W 1,p(Ω;SO(3))×W 1,p(Ω;R3
1)
}
.

The energy functional : The elastic and free energies at time t are defined to be, for
any (y,Q, P ) ∈ A ,
(5.8){
E(t, y,Q, P ) :=

∫
Ω
W(P−1QT∇g(t, y)∇y) dx

F(t, y,Q, P ) := E(t, y,Q, P ) +
∫

Ω
Whard(P ) dx+

∫
Ω
|∇P |p dx+

∫
Ω
|∇Q|p dx.

Remark 5.3. The reader will note the presence of two gradient terms in the
expression for the energy, one for P and one for Q. This is to be expected, if
recalling the setting of [28], because our decomposition of the deformation gradient
involves both P and Q, as already discussed earlier. ¶
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We establish a few properties of E , hence of F . First, under assumptions H1,H5,
a straightforward adaptation of [20, Lemma 5.5] would demonstrate that, for any
(y,Q, P ) ∈ A ,

(5.9) t→ E(t, y,Q, P )(hence F(t, y,Q, P )) is differentiable with derivative

∂tE(resp. ∂tF)(t, y,Q, P ) =

∫
Ω

DW
(
P−1QT∇g(t, y)∇y

)
·P−1QT∇ġ(t, y)∇y dx.

Next, the maps
(5.10)

(t, y,Q, P )→

{
E(t, y,Q, P )

F(t, y,Q, P )
are weakly lower semi-continuous in [0, T ]×A .

Indeed, if (tk, yk, Qk, Pk) ⇀ (t, y,Q, P ), weakly in [0, T ] × A , then, since p > 3,
Rellich’s theorem implies uniform convergence of that sequence in [0, T ]×C0(Ω̄;R3×
SO(3) × R3

1). But, in view of (5.4), ϕk := g(tk, yk) also converges uniformly to
ϕ := g(t, y) in C0(Ω̄;R3) while, thanks to (5.5) and (5.6) it also converges weakly
to ϕ in W 1,p(Ω;R3).

Then, exactly as in the argument leading to (5.33) below (which we prefer to
detail at that time),∫

Ω

W(P−1QT∇ϕ)dx ≤ lim inf
k

∫
Ω

W(P−1
k QTk∇ϕk)dx,

so that

lim inf
k
E(tk, yk, Qk, Pk) = lim inf

k

∫
Ω

W(P−1
k QTk∇ϕk)dx

≥
∫

Ω

W(P−1QT∇ϕ)dx = E(t, y,Q, P ).

The weak lower semi-continuity of F is then established as in (5.24), (5.25) below.
Finally, we claim that there exists a modulus of continuity ω′ such that, for any

(y,Q, P ) ∈ A ,

(5.11) |∂tE(t1, y,Q, P )− ∂tE(t2, y,Q, P )| ≤ C(E(t1, y,Q, P ) + 1)ω′(t1 − t2).

In particular, there also exists a modulus of continuity ωF : [0, T ] → [0,+∞) such
that, for any (y,Q, P ) ∈ A ,
(5.12)
E(t1, y,Q, P ) ≤ F ⇒ |∂tE(t1, y,Q, P )− ∂tE(t2, y,Q, P )| ≤ ωF (t1 − t2) ∀t2 ∈ [0, T ].

Indeed, set

A(t) := DW
(
P−1QT∇g(t, y)∇y

)(
P−1QT∇g(t, y)∇y

)T
,

so that

(5.13) ∂tE(t, y,Q, P ) =

∫
Ω

A(t) · P−1QT∇ġ(t, y)(∇g(t, y))−1QP dx.

In view of (5.4), (5.5), for some constant C > 0,

(5.14)

{
‖∇ġ(t1, y)(∇g(t1, y))−1−∇ġ(t2, y)(∇g(t2, y))−1‖L∞ ≤ C|t1 − t2|
‖∇g(t2, y)(∇g(t1, y))−1 − Id‖L∞ ≤ C|t1 − t2|,
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By (5.1), (5.13), the following holds, for some constant C > 0,

(5.15) |∂tE(t1, y,Q, P )− ∂tE(t2, y,Q, P )| ≤

C

∫
Ω

{
|A(t1)−A(t2)|+ |A(t1)|

∣∣∣∇ġ(t1, y)(∇g(t1, y))−1−∇ġ(t2, y)(∇g(t2, y))−1
∣∣∣}dx

≤ C
(∫

Ω

|A(t1)−A(t2)| dx+

∫
Ω

|A(t1)||t1 − t2| dx
)
.

Using H5 we obtain

(5.16)

∫
Ω

|A(t1)||t1 − t2| dx ≤ C(E((t1, y,Q, P )) + 1)|t1 − t2|.

The second inequality in (5.14), together with (5.1), leads to

‖P−1QT (∇g(t2, y)(∇g(t1, y))−1)QP − Id‖L∞ ≤ C|t1 − t2|.

Applying assumption H6 then yields the estimate

(5.17)

∫
Ω

|A(t1)−A(t2)| dx ≤

ω
(
‖P−1QT∇g(t2, y)(∇g(t1, y))−1QP − Id‖L∞

)
(E(t1, y,Q, P ) + |Ω|)

≤ ω(C|t1 − t2|)(E(t1, y,Q, P ) + |Ω|).

The claim (5.11) follows by inserting (5.16),(5.17) into (5.15) .

We now proceed to define a variational quasi-static evolution in the spirit of
Proposition 4.1 and Definition 4.6. Recall that the terms related to the determinant
drop out of the formulation and that the relevant definition of the dissipation is
that of Remark 4.7.

Definition 5.4. A variational quasi-static evolution for the boundary datum t 7→
g(t) is a function

t ∈ [0, T ] 7→ (y(t), Q(t), P (t)) ∈ A

which satisfies the following conditions with L(t) := logP (t):

(Global Minimality) For every t ∈ [0, T ]

F(t, y(t), Q(t), P (t)) ≤ F(t, y′, Q′, P ′) +

∫
Ω

H(L′ − L(t))dx,

∀(y′, Q′, P ′) ∈ A , L′ := logP ′;

(Energy Conservation) For every t ∈ [0, T ]

F(t, y(t), Q(t), P (t)) + DissH(0, t;L) = F(0, y0, Q0, P 0)+∫ t

0

∫
Ω

DW(P−1(s)QT (s)∇g(s, y(s))∇y(s)) ·P−1(s)QT (s)∇ġ(s, y(s))∇y(s) dx ds,

where
(5.18)

DissH(t1, t2;L) := sup
{si}

{ N∑
i=1

∫
Ω

H(L(si)−L(si−1)) dx : s0 = t1 < s1 < .... < sN = t2

}
.
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The following existence result for a variational quasi-static evolution then holds
true.

Theorem 5.5. Let (y0, Q0, P 0) ∈ A be a stable initial condition, that is such that
it satisfies

(5.19) F(0, y0, Q0, P0) ≤ F(0, y′, Q′, P ′) +

∫
Ω

H(L′ − L0)dx

for every (y′, Q′, P ′) ∈ A with L0 := logP0. Then, there exists a variational quasi-
static evolution

t 7→ (y(t), Q(t), P (t))

such that

y(0) = y0, Q(0) = Q0, P (0) = P0 and L(0) = L0.

Above A is the set defined in (5.7).

Remark 5.6. The existence of a stable initial condition in the sense of (5.19) will
be established in Lemma 5.7 below. ¶

5.1. An auxiliary problem. Our proof, as is customary by now, is based on a
time incremental procedure. We first establish the existence of a globally stable con-
dition for a problem which will provide for the existence of both an initially stable
configuration, that is one that satisfies (5.19), and a time incremental solution.

Lemma 5.7. For every t ∈ [0, T ] and for every Lin ∈ L∞(Ω;R3), there exists an
element (ȳ, Q̄, P̄ ) ∈ A which minimizes

F(t, y,Q, P ) +

∫
Ω

H(logP − Lin) dx

over A .

Proof. Let {(yn, Qn, Pn)} be a minimizing sequence for

(5.20) F(t, y,Q, P ) +

∫
Ω

H(L− Lin) dx

over A . Taking (id, Id, 13 ) as test field we obtain the following uniform bound

(5.21) F(t, yn, Qn, Pn) +

∫
Ω

H(Ln − Lin) dx ≤ C

by H1 and (5.3).
In view of the expression (5.8) for the energy, (5.1), (5.21) imply the existence

of a constant C such that

(5.22) ‖(Pn)−1‖L∞ + ‖Pn‖L∞ + ‖∇Pn‖Lp + ‖∇Qn‖Lp ≤ C.

Therefore, up to subsequences, there exists (P,Q) ∈W 1,p(Ω;R3
1×SO(3)) such that

(Pn, Qn) ⇀ (P,Q) weakly in W 1,p(Ω;R3
1 × SO(3)),

so that

(5.23)

∫
Ω

|∇P |p dx+

∫
Ω

|∇Q|p dx ≤ lim inf
n→+∞

∫
Ω

{|∇Pn|p + |∇Qn|p} dx ≤ C.

Since p > 3, Rellich’s theorem implies that

(5.24) (Pn, Qn)→ (P,Q) strongly in C0(Ω̄;R3
1 × SO(3)),
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so that, in particular, in view of the continuous character of W̃hard,

(5.25) Whard(P
n)→Whard(P ), strongly in C0(Ω̄).

Moreover, since Ln = logPn, setting L = logP , we conclude that

(5.26) ((Pn)−1, Ln)→ (P−1, L) strongly in C0(Ω̄;R3
1 × R3).

It is then immediate that

(5.27)

∫
Ω

H(L− Lin) dx = lim
n→+∞

∫
Ω

H(Ln − Lin) dx.

We now investigate the lower semicontinuity of the elastic energy. Set ϕn :=
g(t, yn). By H4 and (5.21),

‖dist((Pn)−1(Qn)T∇ϕn, SO(3))‖Lp ≤ C for every n ∈ N.

Therefore, (5.22) implies that

‖∇ϕn‖Lp ≤ C‖Pn‖L∞‖Qn‖L∞‖(Pn)−1(Qn)T∇ϕn‖Lp

≤ C(1 + ‖dist((Pn)−1(Qn)T∇ϕn, SO(3))‖Lp) ≤ C.

Since ϕn(x) = g(t, x) on Γ, Poincaré’s inequality yields that {ϕn} is uniformly
bounded in W 1,p(Ω;R3). Hence, there exists ϕ ∈ W 1,p(Ω;R3) such that, up to
subsequences,

(5.28)

{
ϕn ⇀ ϕ, weakly in W 1,p(Ω;R3)

ϕn → ϕ, strongly in C0(Ω̄;R3),

with ϕ(x) = g(t, x) on Γ. In turn, by (5.4), (5.5) and the analogue of (5.6) for
g−1(t, .), this implies that

(5.29) ∃y ∈ Y such that ϕ = g(t, y).

Now, W is polyconvex, so that W(F ) = h(F, cof F,detF ) for some convex
function h : R19 → R̄. By (5.28) and upon invoking the weak continuity for minors,
we deduce that

(5.30) cof ∇ϕn ⇀ cof ∇ϕ, weakly in L
p
2 (Ω;M3×3)

and
(5.31)

det[(Pn)−1(Qn)T∇ϕn] = det∇ϕn ⇀ det[P−1QT∇ϕ] = det∇ϕ, weakly in L
p
3 (Ω).

Now, by (5.24), (5.26) and (5.28) we obtain

(Pn)−1(Qn)T∇ϕn ⇀ P−1QT∇ϕ, weakly in Lp(Ω;M3×3).

Moreover,

cof {(Pn)−1(Qn)T∇ϕn} = det{(Pn)−1(Qn)T∇ϕn}((Pn)−1(Qn)T∇ϕn)−T

= (det∇ϕn)Pn(Qn)T (∇ϕn)−T = Pn(Qn)T cof ∇ϕn,

hence by (5.24), (5.26) and (5.30),

(5.32) cof {(Pn)−1(Qn)T∇ϕn}⇀ PQT cof ∇ϕ = cof {(P )−1(Q)T∇ϕ},

weakly in L
p
2 (Ω;M3×3).
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By (5.30),(5.31),(5.32), and because of the polyconvex character of W, we con-
clude that

(5.33)

∫
Ω

W(P−1QT∇ϕ) dx ≤ lim inf
n→+∞

∫
Ω

W((Pn)−1(Qn)T∇ϕn) dx.

Together, (5.6), (5.27), (5.29), (5.23), (5.25) and (5.33) imply the minimality of
(y,Q, P ) ∈ A for

(5.34) F(t, y,Q, P ) +

∫
Ω

H(L− Lin) dx.

�

Lemma 5.7 is firstly applied to Lin = 0, yielding a triplet (y0, Q0, P0) ∈ A that
minimizes

F(0, y′, Q′, P ′) +

∫
Ω

H(L′)dx,

hence, because of the sub-additive character of H, also such that it minimizes

F(0, y′, Q′, P ′) +

∫
Ω

H(L′ − L0)dx,

with L0 := logP0. The existence of a triplet (y0, Q0, P0) ∈ A satisfying (5.19) is
ensured.

5.2. Proof of Theorem 5.5. The proof follows a scheme which is classical by
now; see e.g. [9] in the setting of small strain elasto-plasticity or [28] in that of
Mielke’s finite plasticity model. First, a time incremental minimization procedure
yields a piecewise constant in time sequence of minimizers. Then, a priori estimates
on that sequence are obtained. With those estimates at hand, the limit in the time
discretization parameter is defined. It is first shown to satisfy global minimality.
Then an upper inequality on the energy is obtained. Finally, an approximation
result of Lebesgue integrals by appropriate Riemann sums is used to prove the
other energy inequality.

Remark 5.8. The specifics of the proof also call upon results obtained in [20] in
the setting of hyperelasticity, so that our argument should be seen as a path that
meanders between the approach used in e.g. [9] and the more abstract approach
favored in [20, Sections 3, 5]. It also parallels the approach used in the proof of
the existence result for a regularized version of Mielke’s plasticity model (see [28,
Theorem 3.1]) alluded to in Remark 4.9. ¶

Throughout the proof, L (with appropriate sub- or superscripts) will stand for
logP (with the corresponding sub- or superscript).

Consider a sequence of subdivisions (tik)0≤i≤k of the interval [0, T ] with

0 = t0k < t1k < · · · < tk−1
k < tkk = T,

and

lim
k→+∞

max
1≤i≤k

(tik − ti−1
k ) = 0.

Set (y0
k, Q

0
k, P

0
k ) = (y0, Q0, P0) and, for k ≥ 1, define (yik, Q

i
k, P

i
k) as an element

of

(5.35) Argmin
{
F(tik, y

′, Q′, P ′) +

∫
Ω

H(L′ − Li−1
k ) dx : (y′, Q′, P ′) ∈ A

}
.
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By virtue of Lemma 5.7, that set is not empty.
Once again, by sub-additivity, (yik, Q

i
k, P

i
k) also satisfies, for all (y′, Q′, P ′) ∈ A ,

(5.36) F(tik, y
i
k, Q

i
k, P

i
k) ≤ F(tik, y

′, Q′, P ′) +

∫
Ω

H(L′ − Lik) dx.

Step 1– Discrete energy inequality: Take (yi−1
k , Qi−1

k , P i−1
k ) as a test triplet in (5.35).

Then, in view of (5.9),

(5.37) F(tik, y
i
k, Q

i
k, P

i
k) +

∫
Ω

H(Lik − Li−1
k ) dx ≤ F(tik, y

i−1
k , Qi−1

k , P i−1
k ) =

F(ti−1
k , yi−1

k , Qi−1
k , P i−1

k ) +

∫ tik

ti−1
k

∂sF(s, yi−1
k , Qi−1

k , P i−1
k ) ds =

F(ti−1
k , yi−1

k , Qi−1
k , P i−1

k ) +

∫ tik

ti−1
k

∫
Ω

{
DW

(
(P i−1
k )−1(Qi−1

k )T∇g(s, yi−1
k )∇yi−1

k

)
·

(P i−1
k )−1(Qi−1

k )T∇ġ(s, yi−1
k )∇yi−1

k

}
dx ds.

Consider now the piecewise constant interpolants

yk(t) = yitk , Qk(t) = Qitk , Pk(t) = P itk ,

where it is the largest integer such that titk ≤ t and set tk(t) := titk .
Iteration of (5.37) yields, in view of the definition (5.18) of the dissipation,

(5.38) F(tk(t), yk(t), Qk(t), Pk(t)) + DissH(0, t;Lk) ≤

F(0, y0, Q0, P0) +

∫ tk(t)

0

∫
Ω

{
DW

(
P−1
k (s)QTk (s)∇g(s, yk(s))∇yk(s)

)
·

P−1
k (s)QTk (s)∇ġ(s, yk(s))∇yk(s)

}
dx ds

= F(0, y0, Q0, P0) +

∫ tk(t)

0

∂tF(s, yk(s), Qk(s), Pk(s)) ds.

We set

Ak(t) := DW
(
P−1
k (t)QTk (t)∇g(t, yk(t))∇yk(t)

)
(
P−1
k (t)QTk (t)∇g(t, yk(t))∇yk(t)

)T
,

so that an equivalent expression for (5.9) is

(5.39) ∂tF(t, yk(t), Qk(t), Pk(t)) =∫
Ω

Ak(t) · P−1
k (t)QTk (t)∇ġ(t, yk(t))(∇g(t, yk(t)))−1Qk(t)Pk(t) dx.

In view of (5.39), (5.38) reads as

(5.40) F(tk(t), yk(t), Qk(t), Pk(t)) + DissH(0, t;Lk) ≤ F(0, y0, Q0, P0)+∫ tk(t)

0

∫
Ω

Ak(s) · P−1
k (s)QTk (s)∇ġ(s, yk(s))(∇g(s, yk(s)))−1Qk(s)Pk(s) dx ds.
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Step 2– Uniform bounds and limit stability: In this step we deduce some uniform
bounds on the piecewise constant interpolants and we study their compactness
properties. To this aim we first notice that, by H5, (5.1), (5.5),

(5.41)
∣∣∣ ∫

Ω

Ak(s) · P−1
k (s)QTk (s)∇ġ(s, yk(s))(∇g(s, yk(s)))−1Qk(s)Pk(s) dx

∣∣∣ ≤
C

∫
|Ak(s)|dx ≤ C

(∫
Ω

W
(
P−1
k (s)QTk (s)∇g(s, yk(s))∇yk(s)

)
dx+ |Ω|

)
for some constant C > 0. Since tk(t) ≤ t, (5.40), (5.41) imply that, for some

constant C > 0,

(5.42) E(tk(t), yk(t), Qk(t), Pk(t)) ≤ C
(

1 +

∫ t

0

E(s, yk(s), Qk(s), Pk(s))ds+ T
)
,

Appealing to (5.11),

|E(tk(t), yk(t), Qk(t), Pk(t))− E(t, yk(t), Qk(t), Pk(t))| ≤∫ t

tk(t)

|∂tE(s, yk(t), Qk(t), Pk(t))|ds ≤ |∂tE(t, yk(t), Qk(t), Pk(t))|(t− tk(t))+

∫ t

tk(t)

|∂tE(s, yk(t), Qk(t), Pk(t))− ∂tE(t, yk(t), Qk(t), Pk(t))|ds ≤

(t−tk(t)) {|∂tE(t, yk(t), Qk(t), Pk(t))|+ C(E(t, yk(t), Qk(t), Pk(t))+1)ω′(t− tk(t))} ,
so that, using (5.13), (5.16) with yk(t), Qk(t), Pk(t) in lieu of y,Q, P , we conclude
that

|E(tk(t), yk(t), Qk(t), Pk(t))− E(t, yk(t), Qk(t), Pk(t))| ≤

C(E(t, yk(t), Qk(t), Pk(t)) + 1)ω′′(t− tk(t)),

for some modulus of continuity ω′′, or still that, for k large enough (independently
of t ∈ [0, T ]),

(5.43) E(t, yk(t), Qk(t), Pk(t)) ≤ (E(tk(t), yk(t), Qk(t), Pk(t)) + Cω′′(t− tk(t))

1− Cω′′(t−tk(t))
.

Inserting (5.42) into (5.43) leads, for some constant CT depending on T , to

E(t, yk(t), Qk(t), Pk(t)) ≤ CT
(∫ t

0

E(s, yk(s), Qk(s), Pk(s))ds+ 1
)
,

provided that k ≥ kT , for some kT only depending on T . Applying Gronwall’s
inequality, we obtain, for t ∈ [0, T ], the estimate
(5.44)

E(t, yk(t), Qk(t), Pk(t)) =

∫
Ω

W
(

(Pk(t))−1(Qk(t))T∇g(t, yk(t))∇yk(t)
)
dx ≤ CT ,

with CT possibly depending on T , but independent of k ≥ kT . Reapplying (5.40),
(5.41), we conclude with the help of (5.44), of the expression for F in (5.8) and
of (5.3) that there exists a possibly different constant CT depending on T , but
independent of k such that

(5.45) F(t, yk(t), Qk(t), Pk(t), Lk(t)) + Var(0, t;Lk) ≤ CT .
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The bound on the total variation of Lk in (5.45) permits application of a gen-
eralized version of Helly’s Selection Principle [27, Theorem 3.2]. Thus, there exists
a map L ∈ BV ([0, T ];Mb(Ω;R3

1)) such that, for a subsequence of Lk, still indexed
by k,

(5.46) Lk(t) ⇀∗ L(t) weak* in Mb(Ω;R3
1) for every t ∈ [0, T ].

Recalling (5.1),(5.5), we deduce, as in the proof of (5.28), the uniform bound

(5.47) ‖P−1
k (t)‖L∞ + ‖yk(t)‖W 1,p + ‖Pk(t)‖W 1,p + ‖Qk(t)‖W 1,p ≤ CT .

Now fix t ∈ [0, T ]. In view of (5.47), there exists a possibly t-dependent subsequence
{(ykt(t), Qkt(t), Pkt(t))}, and a triplet (y(t), Q(t), P (t)) ∈ A such that

ykt(t) ⇀ y(t), weakly in W 1,p(Ω;R3)

Pkt(t) ⇀ P (t), weakly in W 1,p(Ω;R3
1)

Qkt(t) ⇀ Q(t), weakly in W 1,p(Ω;SO(3)).

Since p > 3, we also obtain the following convergences:

(5.48)

{
Lkt(t) → L(t), strongly in C0(Ω̄;R3

1)

ykt(t) → y(t), strongly in C0(Ω̄;R3).

Passing to the liminf in the left hand-side of (5.36) is achieved upon noting that

tk(t)
k

↗ t and applying the lower semi-continuity result (5.10). In view of (5.9)
(which implies continuity in t of the funcional E(., y′, Q′, P ′)) and of (5.48), passing
to the limit in the right hand-side of (5.36) is immediate. Thus,

(5.49) F(t, y(t), Q(t), P (t)) ≤ lim inf
kt
F(tkt(t), ykt(t), Qkt(t), Pkt(t))

≤ F(t, y′, Q′, P ′) +

∫
Ω

H(L′ − L(t)) dx

for all (y′, Q′, P ′) ∈ A .
Finally, in view of (5.46), the convergence of Lk(t) in (5.48) actually takes place

for the whole sequence, that is

(5.50) Lk(t)→ L(t), strongly in C0(Ω̄;R3
1).

Consequently, recalling the definition (5.18) of the dissipation, it is straightforward
that, for any 0 ≤ t1 ≤ t2 ≤ T ,

(5.51) DissH(t1, t2;L) ≤ lim inf
k

DissH(t1, t2;Lk).

Step 3 – Convergence of the right-hand side of (5.38): We set

θk(s) := ∂tF(s, yk(s), Qk(s), Pk(s)) = ∂tE(s, yk(s), Qk(s), Pk(s)) =∫
Ω

Ak(s) · P−1
k (s)QTk (s)∇ġ(s, yk(s))(∇g(s, yk(s)))−1Qk(s)Pk(s) dx.

Combining (5.41) and (5.44) we obtain that

‖θk(s)‖L∞(0,T ) ≤ C.
Define

θ(t) := lim sup
k→+∞

θk(t).
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Fatou’s lemma immediately implies that θ ∈ L1(0, T ) and that, since tk(t)
k

↗ t,

(5.52) lim sup
k

∫ tk(t)

0

θk(s) ds ≤
∫ t

0

θ(s) ds.

Further, we can extract a t-dependent subsequence kt such that

(5.53) θ(t) = lim
kt
θkt(t).

The t-dependent subsequences extracted at the end of the previous step will be
taken to be subsequences of {kt} that we will not relabel.

We now show that

(5.54) θ(t) = ∂tF(t, y(t), Q(t), P (t)) = ∂tE(t, y(t), Q(t), P (t)).

To this effect, we first remark that inserting the test triplet (y(t), Qikt , P
i
kt

) ∈ A
into (5.36) yields∫

Ω

W
(
P−1
kt

(t)QTkt(t)∇g(tk(t), ykt(t))∇ykt(t)
)
dx ≤∫

Ω

W
(
P−1
kt

(t)QTkt(t)∇g(tk(t), y(t))∇y(t)
)
dx.

Hence, because of H1, (5.5) and the uniform convergence of Pkt(t) and Qkt(t),
Fatou’s lemma implies

(5.55) lim sup
k

∫
Ω

W
(
P−1
kt

(t)QTkt(t)∇g(tkt(t), ykt(t))∇ykt(t)
)
dx ≤∫

Ω

W
(
P−1(t)QT (t)∇g(t, y(t))∇y(t)

)
dx.

As when deriving (5.49), passing to the liminf in the integral in the left hand-side

of the above inequality is achieved upon noting that tk(t)
k

↗ t and applying the
lower semi-continuity result (5.10). We get∫

Ω

W
(
P−1(t)QT (t)∇g(t, y(t))∇y(t)

)
dx

≤ lim inf
kt→+∞

∫
Ω

W
(
P−1
kt

(t)QTkt(t)∇g(tkt(t), ykt(t))∇ykt(t)
)
dx

≤ lim sup
kt→+∞

∫
Ω

W
(
P−1
kt

(t)QTkt(t)∇g(tkt(t), ykt(t))∇ykt(t)
)
dx.

Then, we infer from (5.55) that

(5.56) lim
kt→+∞

∫
Ω

W(P−1
kt

(t)QTkt(t)∇g(tkt(t), ykt(t))∇ykt(t)) dt =∫
Ω

W(P−1(t)QT (t)∇g(t, y(t))∇y(t)) dt.

In view of (5.56), and because of the uniform continuity property (5.12), we are
at liberty to apply [20, Proposition 3.3]. We conclude to the continuity under weak
convergence of ∂tE(t, y, P,Q), which establishes (5.54).
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Step 4 – Energy Conservation: First,

(5.57) F(t, y(t), Q(t), P (t)) + DissH(0, t;L)

≤ F(0, y0, Q0, P 0) +

∫ t

0

∫
Ω

DW
(

(P−1(t)(Q)T (t)∇g(t, y(t))∇y(t)
)

· P−1(t)(Q)T (t)∇ġ(t, y(t))∇y(t)
}
dx ds.

Indeed, (5.51) and the first inequality in (5.49) permit to pass to the liminf in
(5.38) yielding

F(t, y(t), Q(t), P (t)) + DissH(0, t;L) ≤ F(0, y0, Q0, P0)

+ lim inf
kt→∞

∫ tkt (t)

0

∂tF(s, ykt(s), Qkt(s), Pkt(s)) ds.

Inequality (5.57) is obtained upon recalling (5.52), (5.54) and (5.9).
We now address the other energy inequality. Fix t ∈ [0, T ] and let (sik)0≤i≤k be

a sequence of subdivisions of [0, t] such that

0 = s0
k < s1

k < · · · < skk = t

and

(5.58) lim
k→+∞

max
0≤i≤k

(sik − si−1
k ) = 0.

Application of (5.49) leads to

(5.59) F(si−1
k , y(si−1

k ), Q(si−1
k ), P (si−1

k ))) ≤ F(si−1
k , y(sik), Q(sik), P (sik))+∫

Ω

H(L(sik)− L(si−1
k )) dx = F(sik, y(sik), Q(sik), P (sik))+

∫
Ω

H(L(sik)− L(si−1
k )) dx−

∫ sik

si−1
k

∂tF(s, y(sik), Q(sik), P (sik)) ds.

Consider now the piecewise constant interpolants

yk(s) = y(sik), Qk(s) = Q(sik), Pk(s) = P (sik) and Lk(s) = L(sik),

where i is the smallest integer such that s ≤ sik. Since skk = t, iterating (5.59) leads
to

k∑
i=1

∫ sik

si−1
k

∂tF(s, y(sik), Q(sik), P (sik)) ds ≤

k∑
i=1

∫
Ω

H(L(sik)− L(si−1
k )) dx+ F(t, yk(t), Qk(t), Pk(t))−F(0, y0, Q0, P 0) ≤

DissH(0, t;L) + F(t, y(t), Q(t), P (t))−F(0, y0, Q0, P 0).

Now,
(5.60)

lim sup
k→+∞

k∑
i=1

∫ sik

si−1
k

∂tF(s, y(sik), Q(sik), P (sik)) ds =

∫ t

0

∂tF(s, y(s), Q(s), P (s)) ds.
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The proof of (5.60) adapts an argument developed in [20, Step 5, Proof of The-
orem 3.4]. Taking (id, Id, 13 ) as test field in the stability condition (5.49) and
recalling (5.1), (5.3) yields the existence of a constant C such that

(5.61) F(t, y(t), Q(t), P (t)) ≤ C for every t ∈ [0, T ].

Moreover,

k∑
i=1

∫ sik

si−1
k

∂sF(s, y(sik), Q(sik), P (sik)) ds =

k∑
i=0

(sik − si−1
k )∂sF(sik, y(sik), Q(sik), P (sik)) ds−

k∑
i=0

ρik,

where

ρik :=

∫ sik

si−1
k

{
∂sF(s, y(sik), Q(sik), P (sik))− ∂sF(sik, y(sik), Q(sik), P (sik))

}
ds.

In the light of (5.61), (5.12) applies, hence

|ρik| ≤ (sik − si−1
k )ωC(sik − si−1

k ) ≤ (sik − si−1
k )ωC

(
max

0≤i≤k
(sik − si−1

k )
)
,

or still, because of (5.58),

lim sup
k

k∑
i=0

∫ sik

si−1
k

∂sF(s, y(sik), Q(sik), P (sik)) ds =

lim sup
k

k∑
i=0

(sik − si−1
k )∂sF(sik, y(sik), Q(sik), P (sik)) ds.

Since s 7→ ∂tF(s, y(s), Q(s), P (s)) ∈ L1(0, T ) by (5.54), equality (5.60) follows
now by (5.58), thanks to an approximation result of Lebesgue integrals by appro-
priately chosen Riemann sums; see [11, Lemma 4.12].

The proof of Theorem 5.5 is complete.

6. The rigid-plastic case

As mentioned earlier, we are currently unable to propose a satisfactory functional
framework for the rate independent evolution identified in Proposition 4.1. The
usual approach to the existence proof consists – as illustrated e.g. in the proof of
Theorem 5.5 above – in incrementing time and iteratively solving a finite number
of minimization problems at each time increment. It might be tempting to further
specialize the setting in the hope of securing at the least an existence result for the
incremental process.

One such effort was initiated in [7], then pursued in e.g. [5, 6] in the setting
of crystal plasticity already evoked in Remark 2.2. In that context the adopted
multiplicative decomposition is taken to be F = EP , but P is restricted to be of
the form

P = I + (Fm · Fs) s⊗m, s,m fixed orthogonal unit vectors
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(see [7, Equations (2.5), (2.8)]). In any case, the main simplification there is that
elasticity is replaced by rigidity. In other words, the following frame indifferent free
energy density is investigated:

(6.1) W(E) =

{
0, E ∈ SO(3)

∞, else.

Then, taking F = I at the initial time, the authors strive to compute the infimum
of the incremental problem, especially at the first time step for which the problem
becomes

inf

{∫
Ω

|Fs · Fm|dx : F = R(I + (Fm · Fs)) s⊗m, R ∈ SO(3)

}
.

Our purpose is not to describe their result, but rather to implement a similar scheme
in the present setting.

We adopt (6.1) as energy, take, as they did, F = I at the initial time and
complete the model with the following Von-Mises type set of admissible stresses:

K := {|C| ≤ c : C ∈M3×3
D },

or still

(6.2) H(T ) = c|T |, T ∈M3×3
D .

Now, we recall that E = P−1QTF , W(E) = W(P−1QTF ) and thus W(E) = 0
if, and only if P−1QTF ∈ SO(3), or still if, and only if F = QPR, R ∈ SO(3), so
that the diagonal entries of P identify with the singular values of F .

Remark that the multiplicative decomposition of F into QPE is certainly not
uniquely determined for a given F ∈ M3×3. However, we are at liberty to define
the reduced energy

(6.3) Ŵ(F ) := min

{∫
Ω

W(E) + H(logP ); F = QPE for some

Q ∈ SO(3), P ∈ P} ,

where P is the set defined in (1.1). In view of the above, Ŵ is easily identified as

(6.4) Ŵ(F ) =


c
√
| log λ1|2 + | log λ2|2 + | log λ3|2,
λ1, λ2, λ3 = 1/λ1λ2 singular values of F, detF = 1,

∞, else.

This can equivalently be written as

Ŵ(F ) := h(detF ) + c
√
| log λ1|2 + | log λ2|2 + | log λ3|2,

where λ1, λ2, λ3 = 1/λ1λ2 singular values of F, detF = 1, and

h(g) :=

{
0, g=1

∞, else.

Note that F → h(detF ) is polyconvex.
We wish, as in [7], to determine the lower semi-continuous envelope of

W : ϕ→
∫

Ω

Ŵ(∇ϕ)dx.
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Of course, the topology for which lower semi-continuity is sought has to be speci-
fied beforehand. As stated several times before, the correct functional framework
is unclear to us at present. We will restrict our attention to the weak topology of
W 1,p(Ω;R3), 1 ≤ p <∞, or the weak-* topology of W 1,∞(Ω;R3), thereby neglect-
ing any kind of concentration effect. Then, the following lemma holds true:

Lemma 6.1 (The 3d rigid-plastic case). Assume that the lower semi-continuous
envelope of W is local, i.e., of the form

ϕ→
∫

Ω

QŴ(∇ϕ)dx,

for some QŴ : M3×3 → R̄. Then,

QŴ(F ) ≡ 0, if detF = 1.

Proof. According to [1, Corollary 3.2], locality of the lower semi-continuous enve-

lope of W on W 1,p(Ω;R3) implies that QŴ is W 1,p-quasiconvex. Then, from [39,

P.164], QŴ is in particular rank-1 convex.

For instance t → QŴ(M + te1 ⊗ e3) must be convex in t for every M ∈ R3×3.
Take

M =

 a 0 0
0 b 0

0 0
1

ab


with a, b > 0 and consider the map

M(t) = M + t~e1 ⊗ ~e3

which satisfies detM(t) = 1. The singular values of M(t) are
(6.5)
λ1 = b

λ2 =

√√√√√ t2+1/a2b2+a2+ t2

√
1+1/t4

(
1/a2b2 + a2

)2

+2/t2
(
1/a2b2+a2

)
−4/t4b2

2

λ3 =
1

bλ2
.

Consequently,

Ŵ(M(t)) = c
√

(log λ1)2 + (log λ2)2 + (log λ3)2

= c
√

(log b)2 + (log λ2)2 + (log b+ log λ2)2

= c
√

2(log b)2 + 2(log λ2)2 + 2 log b log λ2

= c
√

2| log λ2|

√
1 +

(log b)2

(log λ2)2
+

log b

log λ2
.

So, for some C > 0,

0 ≤ QŴ(M(t)) ≤ Ŵ(M(t)) ≤ C log t, as t↗ +∞.
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But a non negative convex function with sublinear growth at∞ must be identically
null. We conclude that

(6.6) QŴ(M(t)) = 0.

Since this holds independently of (a, b) ∈ R2 and of t ∈ (0,∞), λ2 given in (6.5)
varies between 0 and ∞. All possible singular values of an arbitrary F with
h(detF ) = 0 are spanned. Summing up,

0 ≤ QŴ(F ) ≤ h(detF ),

so that the lower semi-continuous envelope of W is trivial, at least as far as incom-
pressible deformations are concerned. �

Remark 6.2. A similar but simpler argument would demonstrate that the analogue
of Lemma 6.1 also holds true when the dimension N is 2. ¶

The conclusion of Lemma 6.1 delivers a serious blow to our newly formulated
model of finite elasto-plasticity and would, at first glance, militate for a different
model. Maybe so, but, in all fairness, the kind of pathology which we have just
observed is not a specificity of our model. It will occur in all variational models
of finite plasticity that are based on a multiplicative decomposition of the total
deformation gradient, and this independently of the order of the decomposition,
provided that the dissipation involves the product P−1Ṗ , or else ṖP−1 because
this will inevitably produce a dissipation functional with some kind of logarithmic
growth.

Remark 6.3. In particular, the model introduced in Remark 4.9 will produce a
similar result. Indeed, taking as we did F = I at the initial time, the dissipation
H(logP ) in our model (6.3) is replaced by D(I, P ) defined in (4.11).

Now, for those P ’s for which the real logarithm of P can be defined unambigu-
ously, insertion of P (s) := exp(s logP ), s ∈ [0, 1] into the expression for D(I, P )
immediately yields

D(I, P ) ≤
∫ 1

0

H(P−1(s)Ṗ (s))ds = H(logP ).

The lack of a universal formula for the real logarithm of a matrix when it exists
(see for example [8]) and our willingly conceded lack of agility in that topic, makes
it difficult for us to conclude in full generality as we did in Lemma 6.1.

Consequently, we content ourselves with the following example. Consider the
unimodular matrix

Na,b =

 0 a 0
−b 0 0

0 0 1/(ab)

 .

Then

Na,b(t) := Na,b + t~e1 ⊗ ~e1 =

 t a 0
−b 0 0

0 0 1/(ab)


is a rank one perturbation ofNa,b. Its eigenvalues, for t ≥ 2

√
ab, are−1/2(

√
t2 − 4ab−

t), 1/2(
√
t2 − 4ab + t), 1/(ab), so that it is diagonalizable. Its logarithm is easily
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computed to be

− 1

2
√
t2 − 4ab

[(t−
√
t2 − 4ab) log(ab)

+2t log(t−√
t2 − 4ab)− t log 4 ]

2a√
t2 − 4ab

log(t+

√
t2 − 4ab)
− log(4ab)

0

b√
t2 − 4ab

log(ab)

a

2
√
t2 − 4ab

[−(t+

√
t2 − 4ab) log(ab)

+2t log(t−
√
t2 − 4ab)

−t log 4]

0

0 0 − a√
t2 − 4ab

log(ab)



,

so that an argument identical to that leading to (6.6) would show that the lower
semi-continuous envelope of the rigid-plastic energy would be identically 0 on the

set of matrices defined as
{
Na,b(t) : a > 0, b > 0, t ≥ 2

√
ab
}

. We conjecture that

the full force of Lemma 6.1 also holds true in the setting of Remark 4.9. ¶

The model of crystal plasticity invoked in [7] is different to the extent that the
slip directions that can be activated (the possible plastic strains P ) are severely
constrained (a single slip direction in the original contribution [7]). Such luxury is
not available if considering a more general model of finite plasticity.

We venture to posit that the true culprit is the multiplicative decomposition
which automatically creates a dissipation involving the ill-fated product.

7. The one dimensional case – a generic study of stability

In this last section, we wish to further illustrate our discomfort with the multi-
plicative decomposition. In a one-dimensional setting all models of plasticity that
abide by the multiplicative decomposition merge into a single model and there is
hardly any room for rivalry between competing theories. Of course, in such a re-
strictive environment, the geometric constraints have to be relaxed and we cannot
assume any longer that the plastic strain should be isochoric.

And yet, even such a simplistic setting carries the seeds of discontent. Indeed,
decompose the deformation ϕ′ into a plastic part p > 0 and an elastic part e,
namely,

ϕ′ = ep = pe.

The free energy W(e) is only function of e. In the footsteps of Section 3, it is
immediate that the first Piola-Kirchhoff stress is given by

π =
1

p
W ′(e),

while the back stress is

b :=
1

p
eW ′(e).

The Cauchy stress (denoted here by σ) is given by

σ = π.
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There is no spin stress (because there are no rotations), thus Clausius-Duhem’s
inequality (3.9) reduces to

bṗ ≥ 0,

that is,

(7.1) eW ′(e) ṗ
p
≥ 0.

In a one dimensional setting it seems reasonable – to us at least – that the yield
criterion acts on a quantity that is independent of the plastic strain; this was so
in the model developed in Section 3 and it is equally so in Mielke’s model (see
Remark 4.9). Accordingly, the only possibility is to assume that the relevant stress
is eW ′(e), admittedly not the Cauchy stress, and then the criterion is

eW ′(e) ∈ K,

where K is an interval containing 0. In essence, only a Von-Mises type model may
arise in a one-dimensional setting. Assume that K is of the form [−c, c], c being
the yield stress.

The degeneracy of the one-dimensional case allows one to choose either ṗ, or
ṗ/p as dual variable in (7.1). Because p(t) > 0, both settings result in the same
elasto-plastic evolution on a segment (0, L), namely,

e(t), p(t) > 0, ϕ′(t) = p(t)e(t)(7.2) (
1

p(t)
W ′(e(t))

)′
= 0(7.3)

|e(t)W ′(e(t))| ≤ c(7.4)

ṗ > 0⇒ e(t)W ′(e(t)) = c(7.5)

ṗ < 0⇒ e(t)W ′(e(t)) = −c(7.6)

Assume that we further impose the following Dirichlet boundary conditions ϕ(0) =
0, ϕ(L) = L+ td (with d > 0, that is a stretch).

Seeking a variational formulation of the system above in the spirit of Section 4
leads to the following global minimality principle at each time:

Find e(t), p(t) > 0 such that
(7.7)∫

(0,L)

W(e(t))dx ≤
∫

(0,L)

W(ê)dx+

∫
(0,L)

c |log p̂− log p(t)| dx,

∀v′ with v(0) = 0, v(L) = L+ td, v′ = êp̂.

We do not rewrite the energy conservation statement in this framework since it will
not be needed in the ensuing analysis.

Note that if, instead of (7.7), we postulated that∫
(0,L)

W(e(t))dx ≤
∫

(0,L)

W(ê)dx+

∫
(0,L)

c |p̂− p(t)| dx,

∀v′ with v(0) = 0, v(L) = L+ td, v′ = êp̂.
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we would not obtain the right yield stress condition (7.4), but rather∣∣∣∣ 1

p(t)
W ′(e(t))e(t)

∣∣∣∣ ≤ c.
(The equilibrium equation (7.3) remains unchanged.)

We now propose to study the system (7.2)-(7.6) with associated energy the one
which comes out of the variational formulation (7.7), that is

(7.8) F(t, ϕ̂, p̂) :=

∫
(0,L)

W(ê)dx+

∫
(0,L)

c |log p̂− log p(t)| dx, ê :=
ϕ̂′

p̂
.

In truth we do so because we do not know how to identify (energy preserving)
global minimizers – or better yet local minimizers – of (7.7), other than through
an investigation of the associated system (7.2)-(7.6) which could easily be seen,
following the proof of Proposition 4.1, to be satisfied for any smooth solution of the
variational evolution.

The free energy W is taken to be such that

(7.9) W(1) = 0,

{
W ≥ 0 strictly convex on its domain

W(e) = 1
2A(e− 1)2, e ≥ 1, A > 0.

The field ϕhom(x, t) := x(1 + td/L) satisfies the boundary condition and the pair
(e(t), p(t)), defined as

e(t) := (1 + td/L), p(t) := 1,

is a minimizer as long as t satisfies

W ′(1 + td/L)(1 + td/L) ≤ c,
that is, as long as t ≤ tc where tc is the positive root of

At2d2/L2 +Atd/L− c = 0.

Uniqueness of such a solution-path is not claimed, in contrast with the conclusion
that could be drawn in the setting of small strain elasto-plasticity (see e.g. [9,
Section 5.2]).

Then

ϕhom(x, t), ehom(t) = ec := 1 + tcd/L, phom(t) =
1 + td/L

ec

is a solution for t ≥ tc.
The solution

(7.10)

ϕhom(x, t), ehom(t) =

{
1 + td/L, t ≤ ec
ec, t ≥ tc

, phom(t) =


1, t ≤ ec
1 + td/L

ec
, t ≥ tc

is labelled the homogeneous solution. It is indeed the unique spatially homogeneous
solution of (7.2)-(7.6) with the boundary conditions ϕ(0) = 0, ϕ(L) = L+ td .

Remark that it is easily checked that the homogeneous solution of that system
is such that, for any smooth pair (w, µ) with w = 0 if x = 0, L, the directional
derivative of F in the smooth direction (w, µ) satisfies, with obvious notation,

(7.11)

{
DF(ϕhom(t), phom(t)) · (w, µ) ≥ 0

DF(ϕhom(t), phom(t)) · (w, µ) = 0 if t ≥ tc.
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We investigate the (local) stability properties of the homogeneous solution under
smooth perturbations. The notion of stability is interpreted as a statement of non-
negativity of

D2F(ϕhom(t), phom(t)) · [(w, µ), (w, µ)]

(the second order directional derivative of F with, once again, obvious notation)
where F was defined in (7.8), this, provided that the first variation of that energy
be 0. We do so because we view it as intuitive that any finer notion of stability
should imply a fortiori stability under smooth variations of F around the solution
(ϕ(t)hom, phom(t)).

In view of (7.11), stability can only be tested for t ≥ tc. Take w smooth with
w = 0 if x = 0, L, µ smooth and consider as test (ϕhom(t) + hw, phom(t) + hµ).
Then we must have

(7.12)

∫
(0,L)

(
1

2
W”

(
ϕ′hom(t)

phom(t)

)(
w′

phom(t)
− µϕ

′
hom(t)

p2
hom(t)

)2

+

W ′
(
ϕ′hom(t)

phom(t)

)(
µ2ϕ

′
hom(t)

p3
hom(t)

− µ w′(t)

p2
hom(t)

)
− c µ2

p2
hom(t)

)
dx ≥ 0.

Take as test functions in (7.12)

µ smooth with

∫ 1

0

µ(y)dy = 0, w(x) = ec

∫ x

0

µ(y)dy.

Then, w′ = µϕ′hom/phom, so that (7.12) reduces to

− c

p2
hom(t)

∫
(0,L)

µ2dx ≥ 0,

which is a contradiction unless µ ≡ 0. We have established the following proposition

Proposition 7.1. Under assumption (7.9), the unique homogeneous solution (ϕhom,
phom) of (7.2)-(7.6) with boundary conditions ϕ(0) = 0, ϕ(L) = L + td is unstable
under regular perturbations for all t ≥ tc, that is there exists a smooth admissible
variation (w, µ) of (ϕhom(t), phom(t)) such that

D2F(ϕhom(t), phom(t))[(w, µ), (w, µ)] < 0,

with F defined in (7.8).

In our opinion, the conspiracy between the previous proposition and Lemma 6.1
in Section 6 results in a two-count indictment of the multiplicative decomposition.
We, like others, may be misguided in attempting to fit such a model in a variational
framework. But it may just be that finite plasticity in the absence of well-defined
slip planes does require regularization from the get-go.
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[38] Miroslav Šilhavý. The mechanics and thermodynamics of continuous media. Texts and Mono-

graphs in Physics. Springer-Verlag, Berlin, 1997.
[39] Luc Tartar. Compensated compactness and applications to partial differential equations. In

Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of Res.

Notes in Math., pages 136–212. Pitman, Boston, Mass., 1979.
[40] Clifford Truesdell. Rational thermodynamics. Springer-Verlag, New York, second edition,

1984. With an appendix by C. C. Wang, With additional appendices by 23 contributors.

(Elisa Davoli) Department of Mathematics, Center for Nonlinear Analysis, Carnegie
Mellon University

E-mail address, E. Davoli: edavoli@andrew.cmu.edu
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