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OPTIMAL BOUNDS FOR CONDUCTION IN TWO-DIMENSIONAL , TWO-PHASE , ANISOTROPIC MEDIA.

G.A. FRANCFORT & F. MURAT

Résumé On considére les mélanges, en proportions non déferminées, de deux matériaux
conducteurs, anisotropes, en dimension 2. On caractérise 1'ensemble des matériaux effectifs
obtenus par homogénéisation d partir de tels mélanges . c'est l'ensembie daes tenseurs de
‘conductivité dont les vecteurs propres sont quelconques et dont les valeurs propres
appartiennent & un certain sous ensemble t de [lR;"]2 . La forme analytique de L dépend de
I'ordre relatif des valeurs propres des tenseurs de conductivité des deux matériaux dorigine.
Les demonstrations reposent sur des propriétés de la théorie de I'homogénéisation spécifiques &
la dimension 2, et notamment sur un critére de stabilité : sous certaines conditions géométriques
sur L, I'ensemble des tenseurs de conductivité dont les valeurs propres appartiennent 8 L est
stable pour T'homogénéisation. Le détail des démonstrations sera donné dans un article a

paraitre.

Abstract, Two dimensional mixtures in arbitrary volume fraction of two anisotropic conducti ng
materials are investigated. The set of a)l effective materials resuiting from the homogenization
of such mivxtures is identified as the set of conductivity tensors whose eigenvalues belong to a
definite region L of [[R;"]2 . The associated eigenvectors are arbitrary. The analytical
determination of L depends on the ordering properties of the eigenvalues of the original
conductivity tensors. The proofs are based on properties of the homogenization theory which are
specific to the two dimensional case. In particular the following stability eriterion holds : the sst
of all conductivity tensors whose eigenvalues belong to L is stable under the homogenization
process whenever L meets several specific geometrical assumptions. The details of the proofs

will appear in a forthcoming paper.

A paraitredans
- Proceedings of the Durham Sumposium on Non-classical Continuum Mechanics, July 1986,

ed. by R.J. KNOPS, Cambrridge University Press, Cambridge (1987),
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- INTRODUCTION
'This paper is concerned with the determination of the set of

all possible effective conductivities of a two~phase anisotropic material
with arbitrary phase geﬁmetry. Since Hashin ‘& Shtrikman's originailbounds on
the set of possible isotropic effective tensors of a two-phase material
with isotropic phases due attention has been paid to the case of isotropic
phases (¢f. Hashin (1983), Tartar (1985), Kohn & Milton (1985), Francfort

& Murat (1986), Ericksen, Kinderlehrer,_Kohn & Lions (1986) and references

therein).
The case of polycrystalline media has been considerably less

investigated (cf. SchulgaSSer'(1977)).

In a two-dimensional setting, Lurie & Cherkaev (1984) addressed
the problem of characterizing the set of all anisotropic effective condue-
tivity tenmsors of a two-phase material with anisotropically conducting
phases in arbitrary volume fraction. In the present paper (which describes
the results of Francfort & Murat (1987)), we revisit Lurie & Cherkaev's bounds
and derive a complete characterization in the two-dimensional case.

We consider two homogeneous and anisotropic conducting materials.

If they are positioned in a common reference configuration, there exists
an orthonormal basis ej;, e of’Rz_such that the conductivity tensors Aj and

Ap of the two phases read as

{Al = oje; 8e; +asesr Bey, ' )
1
Ap = Bre) Be; +Brep Bey,

and we assume with no loss of generality that
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0 <(11 632 <+cn,
0 <Bl QBZ <+'1’,
0!10&2 gBle.

(2}

We seek the set of 21l possible anisotropic effective tensors
corresponding to the mixture of the two phases with no restriction on the
volume fractioms.

When both materials are isotropic (o) =0y, B3 =B5), the result
has been known since Tartar (1974). When the materials are anisotropic, the_
investigated set is shown to depend only on the eigenvalues of the effec~
tive conductivity tensor. Specifically it coincides with the set of all
bounded measurable symmetric mappings on R2 whose eigenvalues lie in a com—
pact subset L of [R:]z. The associated eigenvectors are arbitrary.

The region L is uniquely determined in terms of ay,0z,. 81,82 (ef.
Definition 5). In fact it is the outermost regioﬁ bounded by the eigenva-
lues of the effective tensors corresponding to rank-1 lamination of both
phases with each other or with themseives. The direction of the rank-l
lamination which produces the boundary of that region strongly depends on
the ordering properties of the eigenvalues of the original phases. Three

cases have to be considered in the analysis, namely,

o) <81 and o <Bp,
¢ $B; and oy >B,,
a1 >B; and oy <Bj.

In the three cases parts of the boundary of L are achieved by

lamination of the temsor 4, (resp. A3) with its image by a rotation of angle 5
in the direction e; or e,. The other parts of the boundary of L are obtai-
ned through a layering of the tensor Ay with the tensor A2 in the

direction e) when aj <8; and oy <B8s and in the direction e; otherwise. The
reader is referred to Francfort & Murat (1987) for a complete exposition of
this lamination process.

Our results agree with those of Lurie & Cherkaev (1984) in the
case when o) <B; and oy <P, but disagree with theirs in the case when o) SB;
and as >Bs. The third case was not investigated in Lurie & Cherkaev (1984).

In the first Section of the paper the problem is formulated

in the mathematical setting of H~convergence. The characterization of the
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possible effective temsors is given in the second Section.
It relies on a stability criterion pertaining to the form of

the sets of conductivity tensors which remain stable under H-comvergence.
This stability criterion is the object of the third Section. The fourth

and last Section is devoted to a sketch of its proof.
A complete and detailed exposition of the results presented

here will be found in Francfort & Murat (1987). Oux analysis is based on the

theories of H-convergence and compensated compactness (¢f. e.g. Murat (1977),

(1978), Tartar (1977), (1979}, (1985)).

1. SETTING OF THE PROBLEM
An arbitrary mixture of the two phases defined in (1) is ob-

tained by considering the characteristic function y(x) of the first phase
in R? and the orientation matrix R(x) which quantifies the rotation of the
conductivity temsor at the point x with respect to its reference configu-
ration. In other words a conductivity tensor associated with a mixture of

the two phases is a conductivity tensor of the form
AGx) = x(x) REARE + (1-xx) RE)ARE),

where x is the characteristic function of a measurable subset of B2, R is

a measurable orthogonal matrix on R?, and A; and A, are the tensors defi-

ned in (1).
We consider a family AE of such mixtures, Z.e. a sequence of

Xg and RE such that
A ) = x (x) R_(WAR @H1-x, ) B_(0AR (), (3)

where ¢ is a small parameter which may be viewed as the typical size of the
heterogeneities. in the mixture. We propose to investigate its macroscopic

behaviour, with the help of the theory of H-convergence (Murat (1977), Tar-

tar (1977)).

. “«_
DEFINITION 1. If X <5 a compact subset of [R 1%, K.K) is the
set of all symmetric tensors A with coefficients in LmCRz) whose eigenva=

lues A1, Ao satisfy

(A3(x),22(x)) €K, (Ma(x),A)1(x)) €K almost everywhere ©
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w
DEFINITION 2. Let o,B be two elements of R _. A sequence Ae of

elements oﬁJ&([a,B}z) H-converges to a symmetric linear mapping A 1f and
only if for any bounded domain @ of R? the relation '

(4)

holds true for any sequence w_ in [Ly(R)]2 such that

W —_——y,
{E=Aw.._..»° (5)
qe E € qo’

weakly in [Lo(2)]2 as e tends to zerc while

def B(WE:)1 _ 8w, ),

curl w_ = ,
£ ax2 3%, ? (6)
div q def a(we)l + a(we)z
£ - BX]_ 3X2 ?

lie in a compact set of Hiéc(ﬂ) ¢

REMARK 1. The basic properties resulting from the above defini-

tion can be found in e.g. Murat (1977), Tartar (1977), (1985), Francfort
& Murat (1986), (1987) e '

- The notion of H-limit is meaningful by virtue of the
THEOREM 1. If &_ e a family of elements of M a,B] 2), there
exigts a subsequence of A which H-comverges to an element A of Mol @, 81 %)

and all possible H-limits belongs to M o,B}2) ®

The above theorem was first proved by Spagnolo (67), then revi-
sited by Tartar {(ef. Murat (77), Tartar (77)). A similar proof may be found

in e.g. Simon (79).

REMARK 2. The family AE considered in (3) belongs to A({ a,B8] %)

with

¢ = min{(a;,8;) , B = max(oy,Bs),
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and according to Theorem 1, a subsequence of Ae H-converges to an element

A, of ([u,8]2) ®

At the possible expense of extracting converging subsequences,

we are left with the
DEFINITION 3. Consider a sequence AE of the form (3) where

Ay, Ay are given by (1), Xe 18 a sequence of measurable characteristic
functions and Re: 18 a sequence of orthogonal matrices with measurable
coefficients, Whenever A H-converges to A as € tends to zero, the ten~
sor A 78 referred to as an effective tensor for the mizture of Ay and

Ay @

2. CHARACTERIZATION OF THE POSSIBLE EFFECTIVE TENSORS.

The complete characterization of all effective tensors for the

mixture of A; and A, depends on the relative magnitudes of their eigen-

values.

DEFINITION 4. The tensors Ay and A, defined by (1) are said to

be well ordered if and only if
o] €83 _and 02 QB‘-Z .
Otherwise, i.e. if
a) <B) .Cmd_ az >Bp
or 1T
o] >Ry and oy <Bs

they are said to be badly ordered ¢

DEFINITION 5. If oy, oo, By, 82 satisfy (2), and if further
a00 BBy the sets L, and L, are defined as foZZows : :

*
L, ig the set of all (Ay,As) E[R+]2 such that

@105 SAyhs <B1Bg, (7)
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(B1=e1)A1h2 + (Bo-vp)ayBy A122{B1Br-ujap)

< < .
Aot (B1=a1dAidz + (Bo-up)aiB) (&)

BiBz ~ajay
L, ie the set of all (A;,A) €[R,)2 such that

alagélllp_ QBIBZ’ (9)

A1Az(B1B2—ajan) (52*&2)313\2-*(81-&1)&282

< .
MsA2 B1B2 ~ajaz 0

(82—0‘-2))&1 12 + (Sl—al)azﬁzg

If arap =B85,

*
L, =L, = {(11}2) €[R] 2 | Apdg =0 =B182,
min(ay;B8;) €A1, <max(ay,8,))

*

REMARE 3. The set Lw and Lb are compacts subsets of [R+]2.

Their boundaries are hyperbolic segments in the (A1,%p) variables (see
“Figures 1 to 3 and Remark 5 below for a geometrical representation of LW

and Lb in an other set of variables) e

The set of all effective tensors for the mixture of A; and A,

is characterized with the help of Definitions 4 and 5. Specifically we

obtain the following
THEOREM 2. In the context of Definition 1 to 5, a symmetric

tensor Ao(x) with coefficients in LmCRz) is an effective tensor for the
mizture of Ay and Ay 1f and only if it belongs to ML) when Ay and Ap
are well~ordered and to JK(Lb) when they are not ®

In the case where both A; and A, are isotropic (aj =aj, B] =Bj)

Theorem 2 is the result of Tartar (1974).

REMARK 4. Theorem 2 says that all elements of JL(LW) (respec-
tively JL(Lb)) can be achieved as H-limits of a sequence of Ae satisfying
(3) (ef. Definition 3) and that they are the only ones. Note the absence

of any restrictions on the eigenvectors of the possible effective ten-—

sors A (x).
The proof of the achievability of all elements of JL(L ) and

JL\L ) is performed through explicit construction using multiple layerlng.
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It will not he given here and the reader is referved to Tartar (1985),
Francfort & Murat (1987). In the present paper we focus our attention on

the "only if" part of Theorem 2 ©

Figure 1. (d-}A) representation of Lw in the well ordered case

and Lb in the badly ordered cases.

lo-asVd

=& T(b]
| i
B P2 d

(b) a0 ﬁ;bz d g

REMARK 5. Various geometrical représentations of the sets LW
and Lb are presented in Francfort & Murat (1987). Figures 1(a), 1{b), 1{(c)
correspond to the so-called (d-A)-representation of the sets Lw in the
well-ordered case or Lb in the badly ordered case. Each poin? (A1sAo)
of LW (or Lb) is mapped onto two points p,T(p) whose coordinates .are
(A1hp, max(hy,4p)) and (Ai3hp, mindi;,Ap)). Straight vertical line segments
correspond to effective temsors with equal determinants. In the well orde-
red case the boundaries of the set Lw (for which inequalities (7), (8) |

become equalities) become the two vertical straight line segments ([a,T(a)l,
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{b,T(E)])" together with the concave hyperbolic segment ab and the
straight line segment [T(a),T(b)] {(ef. Fig. 1(a)). In the badly ordered cases
the boundaries of the sets Lb (for which inequalities (9), (10) become
equalities) are the two vertical line segments ([a,T(a)], [b,T(b)]) together
with the straight line segment {a,b] and the convex hyperbolic segment
ff;§5?k) (ef. Fig. 1(b)~1(c)).When cjas =818, the set Lw(= L) reduces to a
vertical straight line segment in its (d,)\)-representation. :

The (d,))-representation is convenient when addressing the
proof of Theorem 2. It is also at the root of a characterization of the

sets of all effective tensors for the mixture of more than two anisotropic

conducting materials (ef. Francfort & Milton (1987)) o

3. A STABILITY CRITERION UNDER H-CONVERGENCE
The proof of the "only if part" of Theorem 2 is an easy conse-

quence of a stability criterion under H-convergence of sets of the form

H(K) (cf. Remark 8 below)., Specifically, our notion of stability is to be

understood as the following

DEFINITION 6. In the context of Definition 2 a subset Nof
M 0, 812) s H-stable if and only if the H-limit A of any H-comverging
sequence A_ of elements of N also belongs to Ne

Our stability criterion is the object of the following
THEOREM 3. Let y and & be two strictly positive real wmumbers

with
a? <y <§<p2,

Let @ and ¥ be two real-valued functions defined on v, 8] with the follo-

wing properties :

@ and ¥ are Cl-functions with values in R:,

¢ 18 conecave, '

Vv 28 convex, (n
w(d)y(d} = d for any d in [y,8].

Define K(y,8,0,¥) as the set of all (iy,Az) in [, Bl 2 such that
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e Qlllz 469
ljl()\l;\z) ‘~<~.}L1,l2 @(p(?\llz) a

Then M,(K{y,8,9,0)) Zg H~stable ®

REMARK 6. The last assumption of (11) is natural. Indeed
whenever the boundary of a given set can be parametrized in the form

Ao = w(llkz), it can be equally parametrized in the form A =9{X;Xx2), with

Pp(d) = w(d)

REMARK 7. Conditions (11) essentially characterize the sets
of the form M, (K) which are stable under H~-convergence. The follow1ng con~

verse of Theorem 3 holds true. Define
K = {(A,22) €[ a,8] 2 such that Y(A1hy) SAy,As <op(ri1rz)},

where @<y are two Cl-function fromZR into itself such that @(dyu(d) =

for any d in R with

min )\1}\2 ng max ;\112. (12)
(X1,X0)EK (A1,25)EK

If K is stable under H~convergence, ¢ is concave and ¢ is convex on the

interval defined by inequalities (12).
The proof of this last result can be found in Francfort & Murat

(1987) =

REMARK 8. The proof of the "only if" part of Theorem 2 is now

straightforward. Since
{(a1,02)} U{(B1,82)} cL ML,

(ef. Definition 5) all sequences AE satisfying (3) (ef. Definition 3) be-
long to JL(LW)ﬂ J@(Lb) and the "only if" part will result from the H-sta-
bility of ML ) when A; and Ay are well-ordered and of JK(Lb)'when Ay and
Ao are badly ordered (ef. Pefinition 4)

‘Let us set
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Y =002, § = 8182.

The case where y = § is left to the reader and we are thus at liberty to

assume that
v <8.
In the well ordered case, we define, for any d in [ vy,§]

d(B1Bo~njay)
q%(d) " (By=a7)d + (Bo—asz)a18;

d
s lbw(d) =a;—(g)' s

whereas in the badly ordered case, we define,

(Bg=az)d + (B1—aj)azfs d
¢%(d) - (B1Bo—ajas) ! wb(d) =¢%(d) '

. By virtue of the ordering properties of oj,0p,B;,B2 the fune-
tions (¢b’ww) (respectively'(¢%,¢d)) are trivially seen to satisfy (11) in
the well-ordered (respectively badly ordered} case.

Theorem 3 applies to the set K(Y’6’¢h’¢w) (respectively

K(y,6,¢%,wb)) and yields the H-stability of JL(K(y,6,¢%,ww)) (respectively

JQ(K(Y’53¢%s¢b)))- Since

[
Il

K(vy, G,tpw,de),
= K('Ysﬁswbvwb_)s

i
i

the desired result is proved ®

4. SKETCH OF THE PROOF OF THEOREM 3.
A complete pfoof of Theorem 3 is presented in Francfort & Murat

(1987). It relies on two main ingredients : a decomposition of the set
K(y,8,9,¥) as a (countable) intersection of sets with specific properties

(ef. (14) below) and a few lemmae pertaining to the theory of H-convergence.

4.1. A decomposition of K{v,5,0,9).
It is firstly remarked that if ¢ and ¢ satisfy (11) there

exists a sequence of real numbers dn in [ v,68] such that, upon setting
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(Dn= p(d ): ’J’ = lb(d Ys

q)n = (d )s k‘) (d ):
then

bie, O

(p 20 and/or tb' =0

©(d)
¢(d)

n=]

A simple computation implies that for any d in [ vy,d]

t 2.0 ! Znty = Tyt - Z
(@d +orp ) (pld+y2e) = d+@ly!(d d )e.

inf {¢'d +w2nw;}, y<d<s,

1 b | .
sup fvia+yZel}, y<d<s.

(13)

Thus, if tp' 20 and w' >0, the inequality Aj,2, =y )\112 +¢2Lp implies that

Apsha <@ A1dg +t92111', whereas, if @'y’ <0,
implies that Ayshy >tpnA112 +1pt2l °

We set

the inequality Xj,2; Scpnkrl A 2+(pr21¢1':1

DEFINITION 7. For any real numbers a,b,r, a >0 and/or b >0,

In view of the above computations, the set E{v,6,¢,¥) decom—

L. (@) ,wiw y N L, (b).vZ00).
< ®1>0

ﬂzg‘;gsz’
L (a,b) ={(A1,42) €[ e,812 | A1,22 <ad;i, +b},
L, (2,5) ={(A1522) €[ 0,812 | A}, Az 2arhp + 1],
Do () ={(A,22) €la,8) 2 | 2<A10,),
D, (z) ={(A1,%2) €[ 0, B] [22210,) @
poses as
R(y:8,0,9) =D_ ()N D (8) M
RASY

REMARK 9. The intersection of H-stable sets is H-stable.

e (14)
¥ >0

Thus,

- by virtue of (l14), the set AM.(K(y,8,9,y)) is H-stable if each of the sets

M0 ()5 HDs (6)), Ml (@],0201)) (0ly! <0),

MLy, (wn,tpfltpn))

(cp;1 20 and- wn =0) is H-stable, which is the object of the next subsection ©
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4.2. A few results of the theory of H-convergence.

Our purpose here is not to give a detailed exposition of the
theory of H-convergence, but rather to state and/or derive the few results

needed in the proof of Theorem 3. Further details may be found in Francfort

& Murat (1987).
The following theorem, specific to the two-dimensional case,

is central to our analysis,

THEOREM 4. Let A_ belong to M «,B]2) and H-converge to an
element A of K(la, g1 3). Then

A A

3 o
— - N -]

3ot Eg H-converges to Py

This result traces back to Keller (1964) A proof was
presented by Kohler & Papanlcolaou (1982) in a probabilistic setting. The

proof presented below is due to L. Tartar.

Proof of Theorem 4. Let v, be as in Definition 2 (ef. (4)-

(6)). If R denotes the rotation of angle - 1/2, we set

wE = Rqe,

1. = Rwe,

B =ra ! ke
E £

Then, as ¢ tends to zero,

'_A'-‘; =.Rq 3
% ° | | S(15)

Nal (ﬂs[

weakly in [ L,(2)]2. Furthermore, recalling (6),

curl w_ = - div q .,
o % : .
div q. = curl W
lie in a compact set of 1-1-I ().

1oc
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Finally,

3 v | | | (17)

Theorem ! applies to B and‘yields the existence of a subse-

quence B of B and of an element B of M((o,8]2) such that B H-con-
verges to B as ¢’ tends to zero. In view of (15)-(17) and the very defi-

nition of H-convergence {ef. Definitiom 2), we conclude that

qo - BoWo’

or still rthat
{I-"RE RA w =0,
_ o oo

‘where I stands for the identity mapping on R2.
A classical argument in the theory of H-convergence permits to

choose v as an arbitrary vector of R2 (at least locally), from which it is

easily concluded that

—pa”!
Bo(x) -RAO (x)
almost everywhere.
The identity

ot
-1 t, _ C
RC R”detc

vhich holds true for any invertible two by two matrix yields the desired

result ©

As announced in Remark 9, the H-stability of M. (K(y,8,0,%))
will result from the H-stability of four kinds of sets. Specifically, the

following lemmae hold in the context of Definition 7 :
LEMMA 1. The sets M(Dg (1)) and MAD, (z)) are H-stable ©

LEMMA 2. If a=0 and b>0, the set .AL(L> (a,b)) Zs H-stable.
If ab <0, the set M{lg (a,b)) is H~stabZe L




- 14 -

Francfort & Murat : Optimal Bounds for Conduction

Lemma 1 easily results from Theorem 4 together with the fol-
lowing comparison lemma (Tartar (1979a))

LEMMA 3. Let A_and B_ bezong to M «,8] %) and H-comverge
A and B respectively. I_r

Ae(x) 'éBE(x), almost everywhere on R2,

then

Ao(x) QBO (x), almost everywhere on R2 e

A complete proof of Lemma 2 is given in Francfort & Murat (1987).
It is based on an adequate rewriting of the set .)}(,(I.‘é (a,b)) (respectively
MLy (a,b))), namely

Hlgz) (@8)) = {ACHLe,B12) [1€()a A) + b ol

for almost any x of R?}.

The actual proof uses Theorem 4 together with Lemma 4 (cf.

Tartar (1979a)) and Lemma 5 (Murat (1976), Boccardo & Marcellini (1978))
stated below.

LEMMA 4. Let A belong to M.([«,B]?) and H-converge to A . If

A — A
€
weak~%x in [Lw(Rz)] " as £ tends to zero, then
Ao (x) <A(x),

for almost any x of R2 e

LEMMA 5. Let A_ belong to M.{ e,B]?) and H-converge to A . Let
w_ be a sequence of [ L1, (9)] 2 such that, as ¢ tends to zero,

w_ e w, weakly in ILZ(Q)] 2,
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while curl v lies in a compact set of H;:éc (). Then, for any positive
® in C_(9),

L] d QZ' ' [
js;tpAOwo w, dx zm'{;tpaewe WE dx
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