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0. INTRODUCTION.

In a previous paper [2], we addressed the homogenization of the wave
equation in the general setting of H-convergence. Specifically we considered
the following wave equation with Dirichlet boundary conditions:

( . %us e . )
P 5 — div(A®gradu®) = f inQ x (0,7),

u®*=0 ondQx(0,7),
u®(0)=a® inQ,

| Ou®
Ot

(0)=5 inQ,

where u® is the unknown field while the other quantities are given. We proved
that, under “minimal” assumptions on the various data, it was possible to

partition the solution «¢ into
uS — ,&6 + ,UE,

where #° can be explicitly described from the only knowledge of the weak
limit field « of u® while v® converges weakly-* to 0 in the appropriate topology
as ¢ tends to zero. ’
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1786 FRANCFORT AND MURAT

The field v* contains a wealth of information which is lost in the limit

process. In particular the energy density associated to v%, i.e.,

£

d* = %{pe(aaz )2 +A£gradv5gradve}

was found to satisfy

e E / d®(z,t)dz is independent of ¢,
Q

e—0
H*— H,

where H is a positive (and in general strictly positive) constant.

Our goal in the present paper is to further describe the local behaviour of
d* as ¢ tends to zero; for example we will aim at computing the measure limit
d® of d°. From a more physical standpoint we strive to understand the space-
time localization properties of the part of the elastic energy that remains '
trapped during the homogenization process. Such a task is at present beyond
our capabilities in the general setting briefly evoked in this introduction, Tt
is merely performed here in the (much simpler) case where 4° and p® are
independent of ¢, the only oscillations being those introduced by the initial
data a® and b°. '

Section 1 is devoted to a precise setting of the problem and to a brief
review of the available results. Section 2 addresses the constant coefficient
case and uses the method of geometrical optics. Through geometrical optics a
detailed description of not only d° but also v* is provided. Section 3 is de-
voted to the case of smooth coefficients and uses the concept of H-measures
introduced by L. TARTAR (cf. [15]) or of microlocal defect-measures in-
troduced by P. GERARD (cf. [5]-{7]). The H-measure associated to the
sequence (Jv®/0t , gradv®) is characterized and it provides in turn a de-
scription of d°. Note that the intricate problems attached to the presence of
a boundary are not broached in this study (see the relevant remark at the
end of Subsection 1.3).

A more detailed preview of the study is given at the end of Section 1
(Subsection 1.3).. - |

The content of the paper is the following:
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1. SETTING OF THE PROBLEM.

This section is divided into three subsections. Subsection 1.1 is devoted
- to a detailed description of the problem under consideration and to a recall
of the results previously obtained in [2].‘ Subsection 1.2 addresses the “purely
periodic” case and demonstrates that, although the field v® is perfectly
determined in that setting, any attempt to depart from “pure periodicity” -
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-by allowing slow spatial modulations for example- leads to a much more
intricate problem. Subsection 1.3 is a continuation of the introduction and
offers a detailed preview of the results derived in the paper.

1.1. Formulation of the problem and recall of previous results.

Consider the following wave equation with Dirichlet boundary condi-

tions:

e OPus divf A° c 0
(1.1) P w(A®gradu®) = f mQx(0,7),
(1.2) u® =0 ondQ x(0,T),

1.3
(1.3) =& in €.

{ ©¥(0)=a® inf,

ot

In (1.1)-(1.3), © is an open bounded subset of RY and u® is a scalar valued

unknown field whereas

(0°(z) = pl(a, g),
A%(z) = A(z, 3,

(14) J | (z) = A( -) ]

a’(z) = ao(:c) +ea(z, E)’

L“@)=Ma§%

almost everywhere in Q. The coefficients p(z,y) and a;;(z,y) (the (4,7)%
coeflicient of A(z,y)) are assumed to be smooth functions defined on Q2 x 7°
. (T is the unit torus of RY ) and to satisfy, for every z in  and every y in 7,

)‘1 < p(:z:,y) < /\21 7
aij(z,y) = aji(e,y) , 1<4,5 <N,
MEP < aij(z,9)6 & < Dol , €€RY,

(Einstein’s summation convention for repeated indices will be used through—
out). The loading f satisfies
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f € L*0,T; L*(5)).

The initial conditions a® and ¢ are such that a(z,y) and b(z,y) are smooth
on £ x T while

o’ € C5o(9),

1.5)
(1.5) a(z,y) =0 , forz in a neighbourhood of H52.

In Sections 2 and 3, a° will be assumed to be 0 and b will satisfy

/ b(z,y)dy =0,
T

while in Section 2, p and A will be constant coefficients and, in Section 3, p

and A will be independent of y, i.e.,

{ po(z) = p(w),
A%(z) = A(x).

Remark 1.1. The smoothness assumptions on the various data entering
(1.1)-(1.8) are much too strong; a careful study of reasonable regularity
assumptions was performed in [2]. Our current purpose here is not to discuss
minimum regularity but rather to avoid questions pertaining to regularity,
focusing instead on the oscillating behaviour of the solution field %°. O

Under the various above listed hypotheses problem (1.1)-(1.3) is known

to yield a unique solution u® with
u® € C°([0, T); H3 () n CX([0, T); LA(Q)).

We are concerned with the intimate behaviour of u® as ¢ tends to zero.
To this effect we recall the definition of the homogenization limit (H -limit)
A® of A¢ which is explicity computable in the present quasi-periodic setiing
(cf. e.g. 1], Ch.1, Theorem 6.1). Define xi(z,y) as the (smooth) solution in
2 x T, unique up to a constant, of

—divy(A(,y) grad,(xi(z,y) + ei))_ =0,
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where ¢; is the i*! basis vector. Then A° is defined as the matrix whose

(i,5)* coefficients is
a;;(z) = / {as(e,v) + asnla,y) K (a, )}y,
17 T ty ] t ] ayk b]
and ‘the solution u® satisfies (cf. e.g. 2], Theorem 3.2)
(1.6) u® — u weak-* in L°°(0, T; H3 (Q)) n WH*°(0, T; L*(2)),
where u is the unique solution in C°([0, T); H3(22)) N CY([0, T}; L*(R)) of

2
(1.7) 'E?:?_t;i — div(A% gradu) = f in Q2 x (0,T),

(1.8) u=90 ondflx(0,T),

u(0) =a" ing,
ao { -

%(0) =" inQ.

The only undefined quantities in (1.7) and (1.9) are 7 and b°, which are

respectively given by

() = fjr p(z, y)dy,
"°(¢)'=;:-(lm—) [r o(2,) b(z, y)dy.

The convergence (1.6) of u® to u can be further explicited upon parti-
tioning u® into
(1.10) uf = 4° + 3%,
where @ and §° are respectively the unique solutions in C°([0, T); H3(Q)) n-
C*([0, T); L*()) of "
. O%i®

(1.11) e div(A®grad@®) = f in Q x (0,7),
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(1.12) %* =0 ondQx(0,7),
4%(0) =a°* inQ,
(1'13) aﬁs 1] .
5 (0)=1b in Q,
and
LT .
(1.14) v div(A®grad9°) =0 in Q x (0,7),
(1.15) 7 =0 ondQ x (0,T),
7°(0) = af — &° in§},
1.16 ~c
(1.16) %(O)=b5-b° in Q.

The only undefined quantity in (1.11)-(1.16) is &, which is defined as the

solution, unique in H}(Q), of

(1.17) —div(A® divd®) = —div(4% grada®) inQ,

(1.18) @ =0 ondQ;

The results obtained in [2] (cf. in particular Theorems 4.1-4.4 of 12))

lead to the following statements of convergence, as ¢ tends to zero:

d4¢  Bu < A0 .72
Fraiadn —+ 0 strongly in C°([0, T]; L*(Q)),
1.19 e ' 2y
( ) grad 4® — grad u — (grady xi)(z, 'g) dz; —0

strongly in C°([0, T); [Lz(Q)]N)a

(1.20) 5~ 0 weak-+ in (0, T; H3(2)) n WH*(0, T; LX(R)).

(Note that the field #° is denoted by v* in [2]).

Convergence (1.19) essentially states that the field @€ can be recovered
from the only knowledge of the limit field « and of the auxiliary functions
xi(%,y). From now onward our attention is focused on the field §¢. -
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Since (cf. (1.5)) a® belongs to HZ(f?) the following corrector’s result
holds true for the solution &° of (1.17)-(1.18) (cf. e.g. [1]), Ch.1, Theorem
6.2):

0
(1.21) a*(z) = a®(z) + ¢ —g—z—(m) xi(z, i;—) + r(z) ae inf,
where
(1.22) P 200 strongly in Ha(§2).

Let us emphasi: that in the absence of hypothesis (1.5), a somewhat
weaker corrector’s result is known to hold true (cf. [14], see also [2] Section
2). .
In view of (1.21) and of the specific form of a®(z), ¥*(z) (cf. (1.4)), (1.18)

reads as
°(0) = € af=, -Zi) —r®(z) ae. inf,

(1.23) -
%t (0) = A(x, g) a.e. in £,

where a(z,y) and B(z,y) are respectively defined as

- a(m’ y) = a(w‘.' y) - %‘?(@X:‘(may):
ﬁ(w: y) = b(.’L‘, y) - bo(w)a

for every (z,y) in 2 x 7.
The form (1.23) of the initial conditions for ¢ suggests to further par-

tition ©° into

% = v 4 7°,
where »® and 7 are the unique solutions in C°([0,77; H(S)
NC* ([0, T); L*(R2)) of

2 ,.&
e O%v

ot?

(1.24) p — div(A® gradv®) =0 in 2 x (0,7),

(1.25) . v =0 ond2x(0,T),
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v¢(0) = ¢ a(z, i:-) in Q,

(1.26) .
2O =p5) no,

Bt
and
| o ' "

(1.27) p° T div(A®grad7®) =0 in Q % (0,7),
(1.28) 7* =0 ondQ x(0,T),
(120 { 7(0)=r° inQ,
1.29 e )

5 (0)=0 in Q.

In view of (1.22), (1.27)-(1.29), the field 7¢ satisfies
(1.30) 7 20 strongly in C°((0, T); HI(Q)) N CX([0, T}; LA()).

Thus the only non trivial contribution to & is that of v® which in view of
(1.20), (1.30) satisfies

(131) v 20 weak-x in L°(0, T; HA(Q)) N WH(0, T; LA()).

It is immediately deduced from (1.30) and Theorem 4.3 of (2] that

1 ’ & 608 2 &0 1 . oo
-é-/gp ,(at) dz ~— -2-H weak-* in L°°(0,T),
| ;}f A€ grad v® grad v° dz =23 %H weak-+ in L>(0,T),
Q
where H is defined as
1
H = 5 QKT{P)B2 + A grad,a grad, a}(z, y)dz dy.

Thus the energy 1°(t) associated with (1.24)-(1.26), namely

£ — 1 £ Gve\2 e € £ .
0 =3 [ (%) + 4% gradv* grad v°) (o, )ds
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satisfies

(1.32) ne 8 H  weak-* in L0, T).

Remark 1.2. Theorem 4.3 of [2] and (1.30) also imply that if

o
-ee(t)zl/(ps a(;;) + Af grad v grad u®)(z, t)dz,

e(t) = f (p° 3t + A* grad @° grad @°)(z, t)dz,

e’(t) = —/(‘[5 «——- —E—AU grad u grad u)(z, t)dz,
2 Jo P\ B¢

denote the energies associated with (1.1)-(1.3), (1.11)-(1.13) and (1.7)-(1.9)

respectively, then, as € tends to zero,

e5() — &() — () > 0 strongly in C°((0, T]),
&5(t) — &°(t) strongly in C°([0, T)),

and thus, by virtue of (1.32),
e®(t) 20 ¢(t) = e®(H) + H weak-= in L*(0,T).

Since H is in general strictly positive there is a non trivial contribution of
 the field v° in the limit e(2) of the energy.
Furthermore the energy density d°(w,t) associated to €°() is exactly

&(z,t) = %(})’(%)2 + A° gradugradu)(a:,t) , z€Q , tel0,T],

but a description of the energy density associated to H has yet to be achieved.
O ‘

We define the energy density associated to v* as
(1.33) .
d*(z,t) = (p (— )2 + A grad v grad v® )(m ), z€Q , te[o,T).

According to (1.32),
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(1.34) / &z, t)do <=2 .
Q

We propose to try and compute the measure d, Limit of the energy
density d° as ¢ tends to zero, i.e., to spatially localize convergence (1.34).
The available information about v° (i.e., convergence (1.31)) does not permit
the computation of the limit of de.

We conclude Subsection 1.1 with a recall of the current setting of our
problem. We consider v* wunique solution in CO([0,T}; H} ()
nc{o, T); LA()) of

’ 2 ,,€
(1.35) p° %;; ~div A°gradv® =0 in Q x (0,7),
(1.36) v* =0 ondx(0,T),
v*(0) = ea(z, ;) in 2,
- Z0)=h(z,2) im0
ot ST e o

with p¢ A° of the form p(z,z/¢), A(z,z/ €} respectively. Further p(z,y),
A(z,y), oz, y), B(z,y) are assumed to be smooth on 2 x T,a and f are
compactly supported in  in the variable ¢ and pB(z) & J7 p(z,y)B(z, y)dy
= 0. We know that v* satisfies (1.31), (1.34) as ¢ tends to zero, and that, for
a subsequence of ¢ (still denoted by ),

(1.38) d*—d weak-+ in L(0,T; M()).
Our goal is the computation of d.

1.2. “Purely” periodic setting versus actual setting,

In Remark 4.6 of [2] the system (1.35)-(1.37) is investigated in the case
where p, A, o« and 8 are assumed to be independent of z,{lisa paralleleﬁiped
with sides of integer lengths and the Dirichlet boundary conditions on v°¢ are
replaced by periodic boundary conditions. In such a case a quasi explicit

formula for the field v is readily available, namely,
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e —.v(% t
(1.39) v(a:,t)—aV(E,E) , €0 , tcRy,
where V is the solution of
v ) )
(1.40) p(y) o divy(A(y)grad, V) =0 in 7 xRy,

{ V(y,0)=a(y) on7,

1.

4 2 (4,0)=8) onT.
(Recall that [~ p(y)B(y)dy = 0). Note that the first equation of the above
system implicitly contains periodic spatial boundary conditions on V. In
contrast V' is not periodic with respect to s. '

It is tempting to extend (1.39) to our present setting (1.35)-(1.37) (which
is a modulation in = of the data a,f and A associated to (1.40)-(1.41)) and
to seek a solution v° of (1.35)~(1.37) of the form

J
e z t e
(142) v ('T‘) t) = P§_1: EP Vp(&-‘,t, 'E':': "6") +r (:Eat):

where J is a (hopefully small) integer and Vp satisfies a {possibly non ho-
mogeneous) wave equation in 7 x R4 with apﬁropriately chosen initial con-
ditions and forcing terms, where the boundary conditions are periodic in y
but not in s, and where finally #° converges to zero in the energy norm (i.e.,
in Ly (Roy; H3 (2)) N Wigr® (R L))

We however claim that a simple argument based on the notion of domain
of dependence for the wave equation shows that & given by (1.42) cannot
be a proper ansatz for v¢. Assume for example that p(z,y) is identically 1
and that A(z,y) is the identity matrix. Then v¢ satisfies

9% e . .
(1.43) i — At =0,
_ v°(0) = ez, -g),
(1.44) 5u¢

5 (0)=8(,%) with /T B(z,y)dy = 0.
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We do not pay much attention here to the boundary conditions for
(1.43)-(1.44) (or to the domain on which (1.43)-(1.44) live); assuming that

a(z,y) = flz,y) =0 , |z|>1,

will imply that v* is identically nul outside the domain of influence of the
initial data and thus that if Q is chosen to be a sufficiently large ball and T
a sufficiently small time, the boundary condition

v* =0 ondQx(0,T)

is satisfied.
Inserting an ansatz of the form (1.42) in (1.43)-(1.44) leads to the fol-
lowing “natural” choices for the functions Vp:
v

—a;;—Ay% ={ inTle.;.,

| { Vi(.’l’:,t, Y 0) = (1’(33',3[),

oV
—a—s“(ms t, Y, 0) - ﬂ(SC, y):
and, for P > 2,
8*Vp 82Vp_, Vp.1 <= 8%Vp,
ds? By Ve _"__{ a2 Az Vpz + 2( otds ; Oz;0y; )}
in7 xRy,
{ VP($:t$y’ 0) = 0:
oVp .
"3'8_'($:t:y$ 0) - Oa
with Vp, = 0.

For such a choice of the Vp’s, the variable z in ansatz (1.42) is merely
a parameter ; consequently, if & and 8 are taken to be 0 on a given ball
|z — 29| £ r of R™, %* will be 0 on that ball for every positive time. But
the actual field v®(z,¢) will feel at time t and point z the effect of the initial
conditions for all points ¢ in the domain of dependence, i.e., for all points
y in the ball [y — 2| < ¢; it is thus quite unlikely that vé(z,t) will remain
identically 0 for all times ¢ on the ball J# — zo] < r. Thus, on such a ball,
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v® would coincide with #¢ and would in general not converge to zero in the

energy norm.
This heuristic argument could be easily formalized in a one dimensional

setting upon choosing « to be identically zero and 8 to be of the form

Blz,y) = Ble) p(y),

with f in Co(RY ) and ¢ an eigenvector for Laplace’s equation on 7.

The reader is invited to compare the failing ansatz (1.42) to that pro-
vided by geometrical optics (see (2.52)-(2.53)), which proves successful in the
case of constant coeflicients. Both ansatzs look similar. Two reasons however
concur in the failure of the proposed expansion. On the one hand, Cauchy
data on v® should only specify the value of V;Q and 8Vp/Os at t = s = (),
and not for every £ > 0 at s = 0. On the other hand Vp(P > 2) satisfies a
non homogeneous wav= squation and, unless additional restrictions are met
by Vp—1,Vp_o and their derivatives so that Vp remains bounded in s, the
right hand side of (1.42) is not even an asymptotic expansion in Lfoc ; such
restrictions might be thought of as filling the gap left open by the absence
of initial conditions for ¢ > 0 and s = 0. In contrast, the geometrical opt1cs

ansatz (2.52)-(2.53) provides a valid expansion.

1.3. Overview of the paper.

In the following sections we propose to address setting (1.35)-(1.37) in
the restricted case of y-independent coefficients.
We will thus assume that

_{p(m »¥) = p(z) = p°(z),

"~ (1.45)
A(z,y) = A(z) = A%(z),

so that the only oscillations in the data will be those of the initial conditions.

Whenever p and A do not depend on z, geometrical optics will be a
convenient tool and a very precise description of v¢ itself will be achieved.
This is the object of Section 2. Specifically a decomposition of v€ of the form

(1.46) C v*=0% et

is obta.ine& with
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”7'"6"L°°(0,T;H1(!RN))nWIrDC'(a,T;L?([RN)) <Cr.

The function ¢ is explicitly computed through the Fourier decomposition of
the initial data ; it is 2 series indexed by the Fourier modes (ef. Theorems
2.2 and 2.3).

Let us remark that decomposition (1.46) is probably known to the
experts in geometrical optics, although we were unable to find a precise
statement of resummation over the Fourier modes in the relevant literature
(expansions involving a finite number of modes can be found in (1], Ch. 4,
p. 949, equation (2.16)). We thus believe that the results of Theorems 2.2
and 2.3 do not duplicate any previously known work.

From the expansion (1.46) we will proceed to recover (c.f. Theorem 2.4)
the weak limit d of the energy density d® which was our original task.

When p and A do depend on z, geometrical optics is 2 much more
delicate tool (well beyond our expertise) and we will follow a totally different
path. Our goal will merely be an accurate description of the measure limit

" d of the energy density d°. To this effect we will invoke the theory of H-

measures recently introduced by L. Tartar and by P. Gerard (cf. [15]-[17],
[5]-]7]) for studying the limits of quadratic products of weakly converging

- quantities. This is the object of Section 3.

Our specific goal will be a.complete characterization of the H-measure
associated to the weakly convéi‘ging sequence (Jv®/0t, grad v®) (cf. (1.31),
(1.35)-(1.87), (1.45)) ; this will be achieved in Theorem 3.4, From the know-
ledge of the H-measure we will be in a position to compute d (cf. Theorem
3.5). In the case of constant coefficients d will be explicitly computed and

the obtained value will be checked to coincide with that derived from the

expansion of v® in Section 2 (¢f. Theorem 2.4, Corollary 3.3 and Remark
3.19).

A last word regarding the boundary conditions. Qur purpose in the
present study is to understand the impact of the oscillations of the initial

‘data on the field v°. We would thus like to avoid a detailed treatment of
the effect of the boundary and boundary conditions. In all fairness we also’

feel somewhat awed at the complexity of that latter task. We will therefore
assume that Q@ = R” while our initial conditions will be essentially compactly

supported.
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Remark 1.3. In this setting, the natural energy space becomes
L0, T; DM2(RY)) N Whee(0,T; L3(RY)), for any fixed T > 0, where
DL2(RY) is the completion of C$°(R™) for the Dirichlet norm [|grad ©||3 ®™)
(cf. [3]), and for a fixed € the solution v*® to (1.35)-(1.37) (with 2 replaced
by RY) satisfies

Ov¢
ot

(1.47) =57z g0, iz 2@®)) + llgrad vl oo o, 732 )) < € < +o0.

If however the initial condition v%(0) belongs to L2(IR"), the estimate
. e v
Ho®liz e 0,752 ™)) S o (0l p2mmy + T”'a_t”LW(O,T;L?(IRN))

together with (1.47) provides an estimate for v¢(¢) in L>(0, T; H1(IR™)), and
permits to keep L(0,T; HY{(RV)) n whe(0,T; L? (R™)) as energy space.r3

Remark 1.4. Note that the solution v¢ to (1.35)-(1.37) (with Q replaced by
R™)Y still satisfies

é 5__-_10 0

v y

weak-x in the energy space (cf. Remark 1.3). | ' m

As a final note of caution, the field v as well as the data associated to

~ the initial values, i.e., & and B, are assumed {o be complex-valued while all

coefficients, i.e., p and A, are real valued. Such a framework will facilitate

the subsequent analysis.

2. THE CASE OF CONSTANT COEFFICIENTS: GEOMETRI-

CAL OPTICS.

This section is divided into three subsections. The first subsection is
devoted to the monochromatic case whose fundamentals can be found in any
work pertaining to geometrical optics (cf. e.g. [1], Ch. 4, Section 2 or 9],
Section 7). Subsection 2.2 addresses the actual setting (1.35)-(1.37), (1.45)
and essentially aims at summing the expansion obtained in Subsection 2.1
(cf. Theorem 2.1) over all frequencies. This is the object of Theorems 2.2
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and 2.3 which only differ as far as the admissible classes of initial data are
concerned. In Subsection 2.3 the weak limit d of the energy density d¢ is
computed in the settings of both previous theorems (cf. Theorem 2.4),

2.1. The monochromatic case.

In this subsection we specialize the setting (1.35)-(1.37) (with Q@ =RY),
(1.45), to the constant coefficient and monochromatic case. We thus consider

¢ %ve . N
(21) p—éﬁ——a,]m-—_ﬂ inR X[R_.]_,

ov®
ot

(2.2)

v°(0) = e a(z) ?k-2/e on RN
(0) —_ ﬂ(:ﬂ) ei21rk.:c/s on IR,N,

where p is stricﬁly positive, and the N x N matrix A with entries a;; is
definite positive (A€€ > X;[¢)%, € € RY). Further we assume that

(2.3) a(z) , Blz) €HYRY;C),
- while
(2.4) Blz)=0 ifk=0.

(The reader is invited to think of o, 8 and v¢ as ay, B and v, ie., the k't
Fourier coefficient in the decomposition of afz,y) and B(z,y) as far as oy
and By are concerned, and the k" coefficient in the expansion of v¢ as far
as vy is concerned. The k indices have been dropped in Subsection 2.1 for

notational convenience.)

Remark 2.1. In the context of Remarks 1.3, 1.4 the natural energy space
is now L®(R4; HYRM))n W1oo(Ry; L2(RY)) and v® satisfies
£ e_-—:ﬁ 0

v ?
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weakly-* in that space as £ tends to zero. Note that these results remain

valid although o and 8 do not have compact support. O

The geometrical optics treatment is classical (cf. e.g. [1], Ch. 4 or [9],
Section 7). A solution of (2.1}-(2.2) of the form

(2.5) vi(z,t) = et SE M e y(a, t) +er(e,t) , zeRY , t>0,

is being sought.

Remark 2.2. The actual expression for v* will be of the form

(2.6) v¥(z,t) =¢ Z gi St(=0/e vE(z,t) + er(z, 1),
+

but the + dependence will only be introduced when needed. (*) |

We propose to insert ansatz (2.5) into (2.1)-(2.2). To this effect we will |

repeatedly need the following derivatiVes:

Q—(eeisfev) (s e —|— i ?—S—v)e‘s/":

“ov O s /e

63 (ee‘S/EU)-(s —I—za mv)e , 1<m<N.
Equation {2.1) becomes
g1 2 ] o5 88 zS/e
() =05 5 ple
823 s a5 dv 0S5 ov
0 iS/e
(27) +€ [(P GIJ a a ) 2( 6't a.t aij. 6 amJ ]z
2U . 3’0 iS5 82
—— e (g — e } e ? /e ==
+€[(P atg a’iJ axi a ,)e (P 6t2 atJ a am" )]

while the initial conditions (2.2) read as

(*) Throughout the text, the symbol 5 implies that the contributions of
the “+ terms” and of the “— terms” are to be added to each other, i.e.,

Eiai =ay+a_,) 4 fay = Gy ~ 0o
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a(m)e2iﬂk,x/€ = t5(=,0) /e v(a:, 0) + T'E(:U, 0),
2.8 ) . €
( ) ﬁ(x)eznrk.zfe = (2_38_?(‘,3, O) +e %(m’o)) eiS(z,0)/¢ +e %"(22,0)

The terms of order €71, and ¢ are successively set to zero in equality (2.7)

yielding
a5\ 2 as os
(2.9) p(at) 7 0z Ox;
85 By 3S dv 1, 88 s\
- (2.10) P az’j‘gx—'a_%" 5(”@‘ 4 ax,-a:cJ)v’
8%re O%re 8%v dv Gv iSfe
(2.11) P"ét-;-—%m"_(p"éﬁ—a"é_gac? <

Equation (2.9) reduces to

' as [ 38 08§
1/2 — . et ——  —
(2.12) P 5 + 4/ ai; 3c; O, =,

which is precisely the eiconal equation. In view of the first equation of (2.8)

a natural choice for the initial condition on § is
(2.13) S(z,0) = 2k - .
~ The solution to (2.12), (2.13) is

(2.14) S* (2, t) = 2n[k - :c:F(Ak 7y,

The phases S+ and S~ correspond to a plane wave situation.
Remark 2.3. In the case where p, 4 depend on z, an ansatz similar to (2 5)

may be proposed. The eiconal equation then becomes

' as
(2.15) = (e, 8) =0,
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where
Alz)k - k\1/2
J k) = £ —F— .
w(z, k) ( p{z)

with the same initial condition, namely (2.13).
The solution to (2.13)-(2.15) is well known (cf. e.g. [1], Ch. 4, Section
2) to be (locally) the transported value of (2.13) along the rays which are

in turn the projections in space (in z) of the bicharacteristics defined as the

integral curves of the following Hamiltonian system:

( dT, _ Ow _ .
_(It— - akp k) H a;P(O) - :CP:

. 1<p<N,
dk, Ow _ — T ey

ik —3;3;(33, k) , kp(0) =27k,

The bicharacteristics are well defined for all times as can be readily

verified once it is remarked that
w(F(), k(1)) = w(F(0),k(0)) , t=0.

Their projections in physical space might however intersect at a point
(z,t) ; at such a point S(z,t) is not well defined as a transported value
along the rays and the geometrical optics ansatz becomes more delicate to
handle. The reader is referred to Remark 2.7, as well as to the comments at

the end of Paragraphe 3.2.1. O

- The existence of two different phase functions $* and $~ (cf. (2.14))
prompt us to consider a solution v* of the form (2.6) as anounced in Remark

2.2. Then (2.8) has to be changed into
afz) e?imkele =(v+(:c 0) + v~ (x,0))e¥ ™2/ | r¥(2,0),
2R (w42, 0) — 07(2,0)

ﬂ(m) e2imk- zfe ___,[ 231r(
- F E(?{"(m, 0)+ 2z, 0)erink /e 4 ¢ FE0.
Upon defining

(2.16) Vi) ¥ Sfate) + oo (p20) ),




(229)

OSCILLATIONS AND ENERGY DENSITIES 1805

we are thus led to set

(2.17) {v+(m, 0) =V*(a),
v (z,0) =V (z),
{ r%(z,0) =0, "
(2.18) ore dvt v~ 2ink-z /e
57 (#:0) = ~(7-(2,0) + (=, 0))e*™**/°,

and (2.8) is identically satisfied.
Equation (2.10) becomes

vt Ak

+
Bt + (pA’C ] k)1/2 grad'v = 0:

(2.19)

which are transport equations for the fields v* and v—. In view of (2.17),
the solutions to (2.19) are
Ak
+ +
. = ———1].
(2.20) v (m,t). |4 (a::F (p Ak - )72 )
Recalling (2.6), (2.14), (2.20) we have thus established that system
(2.1)-(2.2) is solved by v° defined upon setting

9 se = 2ink-zF(ALEY2 g fes o Ak
(2.21) 4*(z,t) e?e ’ 1% (xq:—-__(pAk-k)I/f?t)’
and
(2.22) : v(z,t) = 9°(, ) + e r¥(a, 1).

In (221) V* and V'~ are given by (2.16) and in (2.22) r* satisfies

321”6 62,,,.5
2.23 ———— g i r— T o
( ) P ot2 i 6:;,-63:,- 7,

{ ré(z,0) =0,
ore e
"ét—(a’:,(]) =T N
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with
(e — 2i1r[k-:c:F(4%'—£)”2t]/s (Ak)f (Ak).] P
R (.‘IC,t) = ;8 (""'""""""‘“"""—'Ak A ) az])
v+ Ak
(2.25) ) Oz;0z ; (:): i (p Ak - k)1/2 t)’

. ; Ak - grad VE(z)
& — 2irk-zfe g
Té(z) = ;ie AR I

\

Remark 2.4. The following expressions for the derivatives of 4¢ will be

helpful at various stages of Section 2:
aﬁe . z’S*(z,t)/e A Ak ‘ k 1/2 +
—a-t'— = . € {:FZZ’JT("—'J—-) |4
Ak 1 Akt

Akt )

e iSE(z,8) /e oy, £, +
grad § ge L2k VE + egradV }(wq:(pAk-k)”Z

a

We now propose to derive energy estimates on ¢ and r¢. The compu-
tation of the energy norm of ¢ is straightforward. Recalling Remark 2.4 we

have, for any T > 0,

a6° -
’”'gt"”L“(O,T;Lz(IRN_)) + [lgrad 5| oo (0, 7,22y

(2.26) , _
SC{FIVEL2@mry + e IVVE] 2@my ),

where C is a constant that does not depend on T or k.
Define w as ‘

w =({k| flall 2@~y + [lgrad o] p2wy))
1
+ (18l 2@~y + m” grad flipz@wry) , k#0,

w =([*| leliz@ny + lerad ol 2 @yy) k& =0.

(The reader should think of w as wy associated to k,ay, Bx). Then, in _




- (2.28)
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view of (2.16), (2.26) is bounded above by Cw where C only depends on p,

and A, ie.,

av°
ot

(2.27) =5 N0, 52y + llgradd®|i oo, L2ryy < C w.

The energy estimate on ¢ is obtained through muliiplication of (2.23)
by 8r€/8t. For any T > 0 and any 0 < ¢ < T, the usual steps lead to

/[RN(pl

ore
Ot

2
+ Agradr® - grad r®)(z, t)dz

¢ Ore
— £ 2 _ €
= fm AT @R = [ S (@ o)de ds
eyz 1, N SN
<AlT "L%RN)*“Q;”R V2o msp2@oy + 5 o Jun *1 B (z,8)dz ds

for0 <t T

Gronwall’s lemma implies in turn that

ore
Pl e 0,222 @y + Mllerad ro )2 o o pamyy

1 £
< {P”T'g”%,?(mﬂ) + ‘2‘; 1= ”iz(o,T;L?(lRN))}esz'

The right-hand side of (2.28) can be bounded above, with the help of (2.25),

(2.29) CeT/?{j|grad V-iniz(uw) + Tllvzvi”iz(r&hf) |2

where V2V# denotes the Hessian matrix of V£, Note that the cénstant c
depends on p, A, but not on T or k.
Define w' as ’
W' =(||grad ellpz@y) + ||V2a||L2([RN))
1
+ T ("gradﬁ”m(m!v) + ”Vzﬂllm(mr)) , k#0,

w' =(|lgrad afl ;2 @y + 1V2allr2@ny) , k=0,
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(The reader should think of w' as w}, associated to k, ag, ;). Then, in view
of (2.16), (2.29) is bounded above by C'eTw'? where C' only depends on p
and A (Note that CTeT/? < ('eT). Recalling (2.28) finally yields

Oore
(2.30) II"a_t_IILw(O,T;L2(mh’)) + ||grad rs‘“Lm(O,T;Lz([RN)) < CIGT/Q(A)’

where again C only depends on p, A (and A;).

Expansion {2.21) together with estimates (2.27), (2.30) provide a com-
plete description (of order ¢ in the energy) of the solution v* to (2.1)-(2.2).
Specifically we have proved the following theorem where all k indices are

reintroduced:

THEOREM 2.1. The solution v}, of

2 2

(2'31) a@:’» ai; 68 ;k =0 in [R,N X [R,+,
( v5(0) = e ar(z) ¥™**/¢  onRY,
2.32 . |

) ZE(0) = bu(a) 4 mRY,
with
(2.33) ax(z) , Bi(z) € H*R"; C),

JBL(-T) =0 ifk=0,

is given by

(2:34) O of(e,t) = 8(s, 1) +eri(n, ),

with

(2.35) 65(33 t) —¢ ZBZiW[k-x:F(.é.l;i.)llztllsvi (ﬂ? T (__Lt)
B\ = k (pAk-k)1/2 )

where

(2.36) Vi (z) = b{ak(m)i-——( T k)l/zﬂk(a:)}

Further 4§ and r§ satisfy, for any 0 < T < 400,
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(2.37) 185l 2o 0, 7 @ Yyt 0,72 @y S C i,
(2.38) ||?‘i-||L°°(0,T;H!(IRN))nWI-oo(o,T;Lz(mN)) ST Wiy
with

((wi =(Jk]| ”ak”m(mﬁ’) + |lgrad ax || 2w ~y)

r 0 .if v =
+ 9
”ﬁk”LZ(IRN) + 73 lkl ”grad,@k"Lz([Rw) itk 7/: 0,
(2.39)
w,k :(“gra‘d ak"L"’(IRN) + ”v ak”L‘—’([B,N))
(0 ifk=0,
+4< 1 , .
I_kl' ("gra‘d ﬁk”L?([RN) + ”V ﬁk”[_,z(mN)) itk yﬁ' 0,
\ \
and C, C' are constants which do not depend on T or k. 0

Define, for any w in L0, T; HX(R™)) n WL (0, T; LHR™)),

(2.40) d(w) = —(pl |2 + Agrad wgradw).

The weak limit (in €) of d{vf) = d° can be immediately computed with
the help of expansion (2.34) and of estimates (2.37)-(2.38). We obtain the
following
CoROLLARY 2.1. In the context of Theorem 2.1, the sequence of energy den-
sities d(v§) (cf. (240)) converges weak-+ in L*(0,T; M(RY))
(0<T < +00) to : |

(2 ) |
=7 Z {ri8: (m 5 A:k;)l,z)lz + 4n*(Ak - k)|ax (o ;‘E{'.%W) 2

g, e L L))

Proof of Corollary 2.1. In view of (2.34) we have
d(vg) = d(0%) + o,

where
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Tk ka

ot ot

The term pf does not contribute to the limit energy density since, by
virtue of (2.37)-(2.38),

pl = ¢? d(rk)—|—2eRe{p + Agradr§ grad o }.

) | __
| [ etldedt < CT(tznir, + ellrillencry o)

< CT{e? eT(Wh)? + e TP wpwh ],

(2.42)

(*) where C is a constant that does not depend on T or k. Because of estimate
(2.42) it suffices to compute the limit of d(5%) which is a sum of terms of the
form (cf. Remark 2.4)
(2.43)

d(on by, (£)) = 6% e S0z =i @t ey, | 08) 0<a<?,

where ¥y 4 (1) o2,t) does not depend on ¢ and belongs to L1(0,7T x RM).
If () # (+)' a convenient change of variable transforms, for any ¢ in
C2((0,T) xRY),

T .
] ] das by, (£))(=, Dp(z, Ode dt
0 RN

into

T o _ o _
f /mw e* et ¥/ =iVl iy yns e, Una1 )Py oo UN41) Y,
0

which converges to zero as € tends to zero, even if @ = 0. Thus the only
terms that will contribute to the weak limit of d(%) will be the square terms
associated with & = 0. Upon simple inspection of the expressions for 85§ /Ot

and grad ¢ in Remark 2.4 we thus obtain

Akt

dia,t) = 4n?(4k-B) Y |VE(z F AT
=+

(*) The notation || [[e.() will be used throughout the text as a shorthand
notation for L*°(0, T; H'(RY)) n W20, T; L*(RM)).
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which is precisely (2.41) once V* have been replaced by their expressions
(2.36). ]

2.2. The polychromatic case.

In this subsection we return to the actudl setting of our problem which
involves the entire Fourier spectrum of a and 8 (cf. (1.35)-(1.37), (1.45)). If
all Fourier frequencies are excited, that is if the initial conditions o and i

are of the form
Q_S(x) — Z o:k(:c) e?fﬂ'k--ﬁ?/t:,
keZN

ﬁs(m) — Z ﬁk(m)e%wk-xle,

keZN ~{0}

(2.44)

then the ansatz proposed in Theorem 2.1 will become

v(z,t) = 0%(z,t) +¢ r°(x,1),

with
(0= D 9i(z,1)
keZN |
— 2in[k zF(Akky/2q 10 Vv Akt
==£ e ] T F ———
4 kg;;v{%; a (p Ak - k)12 2k
g = 2, ri(a1),
\ keZN

which is for now a formal expression because it has yet to be proved that all
relevant series converge. This latter task is however rendered obvious with
the estimates obtained in Theorem 2.1. In order for ¥° to be well defined it

is sufficient, by virtue of (2.37), to assume that

(245) 3" wy < +oo,

which will make the series 2 kezn 0F absolutely cbnvergeht in the energy
norm. By the same token »¢ will be well defined if
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(2.46) Y wi < +oo,

which will make & ¢ a remainder of order ¢ in the energy norm.

Note that in view of (2.39), (2.45) implies that o defined in the first
equation of (2.44) is well defined as an a,bsoiutely converging series in H1(RN)
while 3° defined in the second equation of (2.44) is well defined as an abso-
lutely converging series in L2(RY).’

These considerations prompt us to state the following theorem whose

proof is contained in the preceeding discussion:

THEOREM 2.2. Let ay, Py, satisfy, for all k in ZV,

(2.47) ar(z,), Bu(z) € HERY; ©), Bi(z) = 0 ifk = 0,
(2.48) Z wi = o < 400 , Z wh Eo < +oc0,
keZN _ keZN

where w;, and wj, are defined in (2.39). Consider v¢ the solution to

32,05 32,05

. — .. P { N
(2.49) P 5~ %ij Je:0m, 0 mRy xR7,
v¥(0) =ea’(z) onRY,
(2.50) v°®
: = (0) =F%(z) on RY,
where
af = Z ak(q") ezifrk-:c/e’
kcZN
(2.51) )
ﬁe — Z ﬁk(ic) eznrk-r/e-
keZN {0} -

Then ° and ,85' are well defined at least as elements of HX(R") and L*(RY)
respectively and v° converges weak-+ to zero in L°°(0,T;H'(RVN )
N W0, T; L2(R™)) for any 0 < T < +oo. Furthermore,
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(252) ’U(ex,t) = 6(5".':,1) 4 57.6(:1:, t),
with
1 2ia[k. :c:]:(’“‘ ")llzt}/g + Akt
(253) (=, t)—EkGZZ:N {Ze Vit(=z :;:._.___.__.._..( Ak-k)1/2)}’
where
(z)= = 2 1/2
(2.54) V() = {ak(:c) i (Ak 2 Be(x)}.
Finally
(2.55) { 8% 2o, @ yyawr.oo 0,712y < C o,
”rE”Lm(”sT;Hl(RN))ﬁWLW(O,T;Lz([RN)) < c' 6T/z .

Remark 2.5. The reader will not fail to notice that we never defined of
or §° as a(z,z/€) or f(x,z/e) but rather as explicit (absolutely converging)
series (cf. (2.51)). If a(z,y) and B(z,y) are smooth functions on RY x T (T

is the unit torus) then upon setting

oz, y)= Y ouz)et™,

kezZN

Blew) = Y. Pilz)ed™*,

kez¥N {0}

it is immediately seen that

(2.56) :

{ af(z) = alz, g-),
ﬂe(x) = 16(3’3 'g')a

and this remark will give rise to Theorem 2.3.

If however a(z,y) and B(z,y) are less regular (not continuous) then
the definition of a(z,z/¢) or f(z,z/¢) becomes technical or even impossi-
ble whereas one is always at liberty to consider a® and B¢ defined through
(2.51). | - 0
Remark 2.6. In a context similar to that of the previous remark sufficient
conditions for «(z,y) and (=, y) to be such that their (z-dependent} Fourier -
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coefficients satisfy (2.48) are easily derived. Specifically consider s € R;
then any element f in L*(RY; H3(T)) expands as the following absolutely

converging sequence in L2(RL; H3(T)):

f= Z fk(a:)?%vrk-y’

kEZN

with

Z; ”fk“iz(mN) (1+[k]*) < -}oo.
kezN

Thus, if s > 3/2, then for example

> Wllwn = (30 k) (5 k)

kezN _ EEZN —{0} keZN {0}

<G | fllpz@m a0 (1)

def _ 1/2
where ¢, & (zkez,v__{o} k(2 28) .
In view of (2.39), (2.48) is satisfied if and only if

(2.57) E (|k| llarllz@ny + llgrad arll 2@y + ||V204k||L2(tRN)) < +o0,
kezZv

(2.58) 1 1
> (l]ﬂk”m(uzN) + 7 llgrad Bl 2@y + 7 V72 Bx ||L2(raN)) < +o00.

kezZN —{0}

But, by virtue of the above remarks, (2.57) is satisfied if
(2.59) a € XRY; LY(T)) n HYRY; L¥(T)), s > 3/2,
while (2.58) is satisfied if

g€ XRI; LX) n HXRY; HY(T)), s > -1/2,
(2.60) { . ,

] ﬁ(:ﬂ, y)dy = 0.
T
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Note also that (2.47) is then satisfied.

The conclusions of Theorem 2.1 thus remain valid when (2.47)-(2.48)
are replaced by (2.59)-(2.60). O

By virtue of Remarks 2.5 and 2.6 we conclude that if a(z,y) and Bz, y)

are elements of C°(IRY x T) with [ B(z,y)dy = 0 then (2.56) holds true and
(2.59)-(2.60) (hence (2.47)-(2.48)) are satisfied, and we obtain the following

THEOREM 2.3. Let o and 8 be elements of C§(RYN x T) such that

(2.61) / B(z,y)dy = 0.
| T
Then the solution v¢ to
' d%v* 8% N
62 F — Gija—e— =0 i ,
(2.62) P55 a"@:r,-@x,- 0 inRy xR

. ve(O) =ea(z, —:E) onRY,
(263) Bv¢ ;

v - _;'E N
5 (@ =62) RV,

satisfies all the conclusions of Theorem 2.2 (especially (2.52)-(2.55)) upon
setting, for any k in ZV, '

ar(z) = j o(z,y) ey,
T
Be(z) = j,_r B(z,y)e~2m gy,
O

Remark 2.7. Theorems 2.2 and 2.3 provide an accurate description of the
field v° on any finite interval [0, T for a quite reasonable class of initial data.
Although it is somewhat hidden in the argument the key component in the
success of expansion (2.52)-(2.53) is the ability to solve (2.12)-(2.18), i.e., to
unambiguously transport the initial value of the phase (27k - z) along the .
rays. As previously noted in Remark 2.3 when the coefficients p and A depend
on z, the rays may intersect (although the bicharacteristics never do) thus
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preventing a meaningul definition of the phase S in a smooth enough space
(i.e., for example W?2:°°) for the geometrical optics ansatz to be successfull.

A non-zero non-intersecting time ¢, may be shown to exist for the rays
(independently of the frequency k). However at t = ¢, the solution will not
look like a superposition of plane waves and will have to be redecomposed
into plane waves before one can proceed any further. The expansion then

becomes untractable. ]

2.3. The limit energy density.

In Corollary 2.1 we derived the weak limit dy. of the energy density d(v§)
associated to the propagation of a monochromatic oscillating wave. We will
show that the polychromatic case produces a limit energy density d which is
merely the sum over all frequencies of the individual limit energy densities

associated to each frequency. This is the object of the following

THEOREM 2.4. In the contexts of Theorems 2.2 or 2.3 the sequence of
energy densities d(v¢) (cf. (2.40)) converges weak-+ in L*(0,T; M(RY))
(6 <T < +o00) to

(2-64) Akt
P __kEzZ:N Z{(pwk (:c YT k)1/2)|2
+ 4n?(Ak - k)lay ($ + rﬁk—:ﬁ)m) ¥

- Akt Akt
N 1/2 e e § €¥ L. —_——
£ 4m((p Ak B)/2Im B (o & (AE- k)l/z)"‘ (o4 (o Ak - k)1/2)] }
Furthermore d is an element of L*((0,T) x RY). 0

Remark 2.8. The weak limit of any quadratic form in (Ov®/0t,grad v¢)
could also be computed. In particular the weak limits of the kinetic energy
(1/2 p[0v®/0t]*) and of the potential energy (1/2 A grad v - grad v®) can l;)_e
determined. By virtue of the principle of equipartition of the energy densities
(cf. (5.19) in [2]) the limit kinetic and potential energy densities are actually
both equal to 1/2d. = O

Proof of Theorem 2.4. In view of (2.52)-(2.53) the solution field v* is

decomposed as follows, for any K in Z,,
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ve(z, 1) = Z g, ) + z (=, 1) + er(x, 1),

k| <K k> K
kezv kez®

while

” > B <) [8&llen¢zy <€ > wr,

jk>K - k>K [kI>K
kezN kez¥ kez¥

< CW"(K),

where

(2.65) WI(E)= 3w FERo,
{EI>K
kezN

Thus, in the spirit of (2.42), it is easily verified that

dw)=d{ 3 o) +0f,

|kI<K
kez™
where
T
(266) |, vlded <we ),
with
(2.67) w(e, K) = « CT{e? eTo" + € eT%00" + ow"(K)},

where C is a constant that does not depend on T or k. Thus for any ¢ in

C§°((0,T) x RY),

T .
(2.68) f/o fRN Pk v dz dt| < w"(e, K)ol Lo (0,1 xm) -

We now propose to compute the limit of d(zlkl <KkeZN Bg). An argu-
ment identical to that which led to the weak convergence to zero of terms
of the form (2.43) with (&) # (+)' demonstrates that the only terms that
will contribute to the weak limit of d(3 k1< kezy OF) are the square terms
originating in the 0'® order (in ¢) terms in the expressions for 065 /0t and
grad 9% (cf. Remark 2.4.). We thus obtain '
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gi_g[l)/ / d > cpda:dt
|k[<K
kez®

f f Z d;, gada:dt

|k1< K
keg™

(2.69)

where dy, is given in (2.41).
Further

(2.70) Z d is an absolutely converging series in L*((0, T} x R™).
keZN

Indeed, by virtue of (2.41),
(2.71)
0 < / /[[;N Z dirdzdt <CT Z {]lﬂklle(mN) + |k|2 "a’k”iz(ﬁn)},

keZN kezn

where C is a constant which does not depend on T or k.
Upon recalling (2.57)-(2.58) we have

> i@y + Y WBellzs@m < +oo,

kezN ' keZN —{0}

which implies in turn that

(2.72) Z [k]? “ak"iz([RN) + Z |BeliZ2@ny < +oo,
kezZy keZ¥—{0}

since £ C £% (small LP-spaces).

The absolute convergence of ), . 7w d is obtained by inserting estimate
(2 72) into inequality (2.71).

Collecting (2.67)-(2.69), letting ¢ tend to zero, then choosing K large
enough and appealing to (2.65) and (2.70) yields the desired result. o
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3. THE CASE OF SMOOTH COEFFICIENTS: H-MEASURES.

This section is devoted to the investigation of the wave equation with
oscillating initial data and non oscillating coefficients that are smooth (C*)
functions of z, the space variable.

Specifically we consider the system

O%¢

o(z) s — div(A(z)gradv®) =0 nRY xR,
(3.1) v¥(0) = 9%(z) imnR”,

dve

5 (0) = f5(z) inRM.

We assume that p(z) and A(z) are smooth functions on R” satisfying uni-
form boundedness and coercivity properties and that, for any N-tuple «,

(3.2) |[D%a;j(z)| is uniformly bounded on R”.

The quantities 4 and * are smooth functions on R , compactly supported

with a common compact support K°. They further satisfy

¢ —0 weakly in HY{(RM),
(33) {'r y R")

#°—0 weakly in L*(RY),

as € tends to zero, which in turn easily implies that
(3.4) 0 =0 in LO@R; B (RY)) n WHO(R; LA RY)),

as € tends to zero.

Remark 3.1. The initial conditions will be further specialized in Subsection
3.3 to be of the form

{ Y(z) = eafs, Z),
(3-5) &

B(z) = Bz, ;)’
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where a(z,y) and fB(z,y) are smooth on RY x 7 (7 is the unit torus),
compactly supported and g further satisfies

(3.6) : Lﬂ(z,y)dy = 0.

Such initial conditions will permit to compare the results of Subsection
3.2 -results which only depend on hypothesis (3.3)- to those of Section 2
whenever A(z) and p(z) are assumed to be independent of z. D

As mentioned before in Section 1 and in Remarks 2.3, 2.7, geometrical
optics is a much more delicate tool to implement in the present setting. We
will follow a different path and obtain an accurate description of the measure-
limit of the energy density

&(2,1) = 510) ()" + A(e)grad v gradv¥](z, 1),

as well as of the measure-limits of all quadratic quantities in (grad v¢, 8v°/8t).

Let us emphasize however that we will not be in a position to provide
a description of the field v itself, in striking contast with the outcome of
the geometrical optics method (cf. Theorems 2.2-2.3). Thus the employed
method, although definitely more flexible, is less precise: it only pertains to
the “second moments” of the field ve.

We propose to resort, for the fulfillment of our task, to the theory of H-
measures introduced by L. TARTAR (cf. {15]-[17]) or to that, very similar,
of microlocal defect measures introduced by P. GERARD (cf. [5}-[7]). The
first subsection of Section 3 is devoted to a brief and basic review of the fun-
damentals of H-measure theory. The second subsection applies that theory
to our specific setting (i.e., (3.1)-(3.3)) while the third subsection specializes
the results obtained in the previous subsection to the setting of Remark 3.1
and compares them with those of Section 2 in the constant coefficient case.

3.1. H-measures.

This subsection is almost entirely borrowed from [15) with some reference
to [5]-[7). All results quoted here are due to the above mentioned authors.
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H-measures are concerned with sequences of RM™-valued functions that
weakly converge to zero in L?. Because minimal regularity hypotheses are not
- foremost in our study we adopt P. GERARD’s definition over L. TARTAR's.
To this effect we recall the most basic facts about pseudo-differential
operators, referring the readers to [8], [18] for example for further details.
Firstly the space S™(IR?,RM 2) of symbols of order m on R? is defined
as the set of all elements p(y,£) in C°°(IRQ [RQ RM’ )} such that for every
compact subset K of R? and for every pair of n-tuples -, § there exists a
constant C., 5(X) such that

1D} D p(y,€)| < Cs(KY1+ €)™ y e K | ¢ e RO,

A standard pseudo-differential operator P of order m is defined, for every
CM-valued u in [CP(RO)M,

Ful)= Zé?r})_@ [, et ouie
= (p(y, () (v),

where " and ~ denote the Fourier and inverse Fourier transformations, up to
normalization constants. As such P extends to a continuous mapping from
[HYBRPNM to [HL™(R)|M for every real number . If further there exists

a2 constant-C., s independent of K such that
(3.7) ID;’DésP(yyé)l SCrs(L+ D™, y e R, ¢ €RY,

“then P extends to a continuous mapping from [HY(R®)M to [H t"’"([RQ)]M
We further specialize p(y, £) to be of the form :

(3.9)
(p(y,€) =p™(¥,€) x(€) + p™ (v, ),

p™(y,€) is homogeneous of degree m in &,

PN (y,€) € SPTYRYGRMYY , p™t satisfies (3.7),

x(E) €eC™R), 0< x(8) <1, x(¢) = 0 in a neighbourhood of ¢ =0,
x(€) = 1, for [¢| large enough.

-

\

The set of operators P associated to symbols p(y,£) of the form (3.8)
is denoted by 'gb'“(IRQ IRM) p™ is called the principal symbol The subset
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of p™(R?;RM) associated to compactly supported p™’s and p™ s (in y)
is denoted by '(,b;“([RQ;[RM). Note that changing the cut-off function x only
modifies P by a smoothing operator (i.e., with a symbol in N,, S™(R?;RM)).

The following existence theorem for H-measure is then derived ({15],
Theorem 1.1 and Corollary 1.2, or [5], Theorem 1):

THEOREM 3.1. Let V° be a sequence of [L2(IR®)]M that converges weakly
to zero in that space. There exists a subsequence of V¢ and a R x RM
-valued Radon measure y on lRyQ X S? 1 such that, for every element P of
PR RM),

lirﬁ/ (PVS)-Vidy =< p,p° >
Ry

e—0

(3.9) =fqusqql tr{p° (v, £)u(dy d€)}

"
= _ZI /iRstq_l Pi;(y, E)piz{dy dE).
L}= v .

¢

Further the measure y is hermitian semi-positive in the following sense

Wi =g o, 154, <M,

M
Z Pij hi Hﬁ,— is a positive Radon measure, h € C¥.
3, 7=1

Finally if V= = 0 outside a closed set K of R?, then supp p C K X SE—I.

‘The measure y is the H-measure associated to the subsequence V¢, a

Example 3.1. Theorem 3.1 permits in particular the identification of the
measure limit of [V¢[2. To this effect p° is taken to be of the form

P, =0 , 1<ij<M , ¢eCPR).

Application of (3.9) yields

: M
lim |[V¢)]? = f ;i(dy de).
lim |V¢| ; - (dy d¢)
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H-measures behave remarkably well with respect to localization as
demonstrated by the following result due to L. TARTAR ([15], Theorem

1.6)).

THEOREM 3.2. Consider a sequence V* which converges weakly to zero in
[LHR2))M and which defines a H-measure p: If Ve further satisfies

QM 5
S2Y A (CiW)VE) 0 strongly in HZAR®),
k=1 i1 YUk

where C,‘;(y) (1£Ek<Q,1 <4< M) is continuous on IR!?, then

Q@ M
(3.10) DN Clw)ermii=0 , 1<j<M,
k=1 i=1
for every (y, &) in IR;2 X S?_l. ' o

Note that a similar theorem can be proved when the differential relations

QM 4
Z Z a—-g;-(Ck(y)Ve) — 0 strongly in H;!(R?),

=1 i=1

are replaced by
PVe - 0 strongly in H;;}(R?),

where P is an element of '(R?;IR™). Relations (3.10) then become
Pily, Ouij =0 , 1<j<M.

Equality (3.10) is actually a set of M-relations that the H-measure 7
must satisfy. Property (3.10) is refered to as localization since it localizes
the support of p.

Finally the following lemma about symbolic calculus for pseudo-
differential operators is needed (cf. e.g. [18], Theorems 4.2, 4.3 and Corollary
4.2 or [15], Lemma 3.2 or [6], Corollary 1.3):

LEMMA 3.1. Let P and Q be two scalar-valued pseudo—dxfferentzal oper-
ators in ¥™(R9; IR) and zbm (RP;R) respectively Whose principal symbols
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are respectively p™ and ¢™ . Then P* (the adjoint of P), PQ and [P, Q)] d:_:s{
PQ — QP are scalar valued pseudo-differential operators which belong to
H™(R;R), p™+™ (R%;R) and ™t ~YRPR) respectively. Their princi-
pal symbol p*™, (pg)™+™" {p™ ¢™'} are respectively given by

. %m =""—n"i‘
(3.11) { pe=rn ,
(pg)™*™ =p™ g™,
m omy l 8pm aqm' ~ aqm' apm
" q }‘i(ag dy ot ay)
(3.12) 9

op™ Gg™  Og™ Op™

i o\ O By B ayk)'

O

We have now at our disposal the main ingredients necessary to a suc-
cessful pursuit of our analysis of (3.1)-(3.3). A few other results pertaining to
H-measures will be needed in the sequel and called forth whenever deemed

appropriate.

'3.2. The H-measure associated to the solution of the wave equa-

tion.

As noted in (3.4) the solution v of (3.1}, (3.3) converges weakly to zero
in the energy norm. Thus the RV -valued field V* defined, for any given
T>0,as
(3.13)

{ Vi) =005 @0 L Vi) =0030(Y , 1<i<H,

0t)=1 on[0,T] , 6eCP(R),

is a weakly converging sequence in LZ(RV*?) with weak limit zero. The time
truncation performed in (3.13) is needed since the solution v of (3.1), (3.3)
lies in L2(Ry; HY(RN)) N WL(R,; L2(RN)) and not in L2(IRy; HH(RY)) N
HY(R,; L*(RY )}, the natural space from the stand point of H-measure
theory.
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Setting @ =N +1and M = N +1 places us in the setting of the first
subsection and permits application of Theorem 3.1 to a subsequence of V¢
(still indexed by €). We conclude to the existence of a H-measure g which
is a (N + 1) x (N + 1) matrix of (scalar valued) Radon measures y;; on
R, xR x SV __

In the remainder of Section 3 the following notation is adopted:

{ y= (yO: Yiy--ey yN) = (t) 3:))
{= (€0a§1, e €N) = (Ta 7?)1

with

{yﬂzt P y£=33:' 5 IS?'SN:;
£0=7' ’ £=ni , 1<e< N

Then g;; is a measure of the form #ij(dy d€), with 0 < i, 7 < N and all sums
of the form 23—4 , ZJM=1 that appear in Subsection 3.1 are to be replaced by
Eﬁ__o, ;\;O, since all indices run from 0 to N (and not from 1 to N + 1).

* QOur ultimate goal is to pass to the limit in the energy density d°, ie.,
to compute for any @ in C§°((0, T) x R™) the limit, as ¢ tends to zero, of

(3.14)
N
def 5 - 1 17632 E . £ V£,
D= j(‘o,T)#RN Fodide =3 [RN“[p(m)(VO) " AV Vg do

t,5=1

Note that the fact that = 1 on [0, 77 has been implicitly used in the second
‘equality of (3.14). _
Defining p°(y,£) as the £-independent matrix with coefficients

| pz)p(t,z)if i = j =0,
2%y, €)(= pY(y)) = 0 #fi=0,1<j<Norj=0,1<i<N, |
| aij(@)plt,2) 1 <i,j < N,
permits o rewrite (8.14) as

_De = lf PVEVE dy,
2 Jr¥+

where P is a pseudo-differential operator with p°® as principal symbol, Ap-
plication of Theorem 3.1 yields

oDl po. 1 o
@15)  lmDo=j<wP>=g [ 6B [ v de)y
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Thus the identification of the measure limit of d* will be attained once
p is identified. Such a problem was addressed in {15] (Section 3.3). Lemma
3.10 and Theorem 3.12 of [15] read as follows:

THEOREM 3.3. The H-measure p has the form
(3.16) p=(E® 8w, e, pij =&y, 04,5 <N,
where £ € ST and v(dy d¢ ) is a non negative scalar-valued measure satisfying

(3.17) Az, v =0,

(3-18) | < ov, {$,Q} >=0.

In (3.17), (3.18),

N

(319) Q&) = 5l0(e)r" — A@)n 7l = 3l ~ Y esi(a)éi il

i,j=1
and $(t,z, &) is é.ny smooth compactly supported function of
(0,7) x RY S§. Finally { } denotes the Poisson bracket (cf. (3.12)
in Lemma 3.1). _ ]
Remark 3.2. The proof of Theorem 3.3 will not be given here but a proof
of (3.18) would be easily recovered from the proof of (3.97) in Theorem 3.4

below. _
Equations (3.16) and (3.17) are simple applications of the localization

principle (ie., Theorem 3.2) to the sequence V¢ = (8v¢/t,gradv®);
indeed V* has zero time-space curl (which yields (3.16)) while the sequence
(p(_:c)Vos,—E;\i__l 2;j()Vf,1 < ¢ £ N) has zero divergence (which yields
(3.17)). | | a|
Remark 3.3. Note that in Theorem (3.12) of [15] equation (3.18) is stated

as

(3.18bis) <v,{$,Q} >=0.
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It is our belief that (3.18) should be stated as is, as witnessed by the
discussion of the role of the initial conditions and Theorem 3.4 below. In
any case (3.18) and (3.18bis) are equivalent. Indeed choosing ¢ of the form
fo¢(y,§) in (3.18bis) yields (3.18) since

{£0 9;: Q} =& {ﬁga Q}
Conversely choosing ¢ of the form 1 [&0(6)d(y, €) in (3.18), with

pel ""(.‘5"._{\'r )
¥(€) = 0 in a neighbourhood of & = 0,
¥(€) = 1 outside a neighbourhood (in Sé\r Jof & =0,

and using the 1nformation (3.20) below on the support of v y:elds (3.18bis)

since

< fof/,{ﬁ—g $6,Q} >=< v, {¢4,Q} >=< 1,{5,0Q} >.

Remark 3.4. It is important to observe that

(3.20) { (n,7) € supp v for (n,7) in a neighbourhood (in Sév)

of the points where r = 0,1 0r — 1.

Indeed (3.17) reads as

(- N
p(z)r? = E - ai(@)mn;,
71 :

_on  supp v.

. 72+Iﬂ12 = 1!

The coercivity property of A(z) and positivity property of plz) (assumed
throughout this study) then imply (3.20). o

In the sequel we seek an interpretation of (3.18) as a transport equation.
This is the object of Paragraph 3.2.1. It is proved there that v is transported

along specific integral curves of a system of ordinary differential equations
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- (see Lemma 3.2). These integral curves are in turn interpreted in terms of
the Hamiltonian @ in Remark 3.9. The measure v is then determined by
“its initial conditions” which need to be recovered. This is the object of
Paragraph 3.2.2 and specifically of Theorem 3.4. Paragraph 3.2.3 1s very
short and devoted to the limit energy density.

3.2.1. Interpreting (3.18).

To avoid technicalities it is assumed in this paragraph that v is repre-

sented by a density
v(dy d€) = v(y, §)dy dE.

The argument couid be carried through in the case of a general measure v
because all functions that are applied to v are C§° and all computations could
thus be performed in a distributional sense. Lemima 3.2 in Paragraph 3.2.1
is consequently stated for an arbitrary measure v satisfying (3.18).
Gur first task is to integrate equation (3.18) by parts so as to evidence
- a transport equation (albeit in weak form). Equation (3.18) reads as

[ / o)) Z gf gﬁ)

~ [ [ e Zgg 22)a =o

Since ¢ has compact support in y the last integral in (3.21) reads as

(3.21)

N
(322 - /B oy /S i (g 3%;:’) ‘;2 + (&) agfgg,-))q‘dg-

The handling of the first integral of (3.21) is more delicate because the in-
tegration over the frequency variable ¢ takes place on the sphere S¥. Upon

setting
b= (ew) e » OSi<N,

our task is reduced to that of performmg an integration by parts on an

integral of the form
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/Swzﬂa&dé,

=0

for which the following holds true (cf. e.g. [12], Lemma 4.9):
N
/ {Z % ¢ ag, (; 9"”") o 1%
(3.23) +[3N ( Z n, nJ)
=/SNH(§ einf)qsdf,

where 7 stands for the outwardly directed unit normal to S and H denotes
the mean curvature. Since ¢, which is defined on S , is extended to RN !

in (3.23) by homogeneity of degree zero and since n = £ on S¥,
vt

Further the mean curvature H of the sphere S¥ is

wﬂ

(3.24)

(3.25) H=N.

Thus recalling (3.23)-(3.25) the first integral of (3.21) reads as
(3.26)

Lo tn [ #tvten) (f; )
-—ZI 5%((601/)5;) +§jﬂ 57 () 52) 665
/RNH / "6{(50”)2( 5% T By a§,+(z ayag,ff.) &)
5 e (58 20y

Subtracting (3.22) from (3.26), recalling the homogeneous character of
degree 2 of Q, hence of 8Q/8y;, 0 < i < N, yields in place of (3.21)

=0
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'(327
3(£v oQ (¢ Y 80
JRETR)> a;,)a—g;——-—;;”(@;—(g 226)e)

+(N+2)(§0V)(Z s2e:) bt =

The test function ¢ is an arbitrary smooth (compactly supported)
function on (0,7) x RY x S N. thus (3.27) implies

A Eov B(qr A
351G (5 Ao

(3.28) N
o a .
+ (N + ;fjifo!/)(z ;Q_g,-) =0 inD'((0,T)xRY x ).
i=0
Differentiation of (3.17) with respect to y; permits to rewrite (3.28) as
(3. 29)
9(&ov) 3@ 3(591/)
N +2)Q ¢; = Q.

g Oy ( — (Ve 6) ToE (33; (Z 6?7’1 €J)§)
The above computation has enabled us to obtain a transport equation for the
measure v, namely (3.29). Further analysis of that equation will be pursued

momentarily.

Remark 3.5. This remark pertains to the definition of a trace for the
quantity 8Q/dr(rv) at ¢ = 0.

The scalar valued measure v is a non negative Radon measure and can
thus be represented, by virtue of Riesz representation theorem, by a regular
Borel measure dv. We are thus at liberty to consider

ij+1 fs?, r(z,4,§)x, . (Ddv,

where x 000 is the characteristic function of the open intervall (0,00) and »

is an element of C$°([0, c0) x RY x S‘EN) ; we set, for such r’s,

(3.30) Ly r>= fmf’fl /Sévrx(o,oo)du

~ Note that

Lyr>=<v,r> forrinCP((0,00) x RY x .S'év)
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When ¢ lies in C§°([0, co) x RY x S§'),r = 7{$,Q} belongs to the same
set which permits to define < v, {¢, Q} >. We will sketch below a proof to
the effect that < 7v,{¢, @} >> only depends on ¢t =0,z,£ ) ; the previous
expression defines the trace of 8Q/0r v at time t = 0. Indeed, for ¢ in
C5°([0,T) x RY x S¥)

T N
0¢ 0Q 8¢ 8Q
L Tv >= dtfdx/ d i — o z, %, &)
8@>=[af X5 5 5y 5@t
Performing various integrations by parts in a manner analogous to that which
led to the transport equation (3.29) and taking into account the boundary
terms at time { = 0 (¢ is not zero at ¢ = 0) enables us to rewrite the above

equality as
T
< ™,{4,Q} > =f / {left hand side of (3.29)} ¢ d¢ dz dt
0 JRY JS¥ —

In view of (3.29), the right hand side of (3.31) reduces to its second
term and thus < 7v, {¢, Q} > defines the trace of Q/87 v at £ = 0 when
v(z,t,£) is a (smooth) density for v.

When v does not have the previously assumed regularity, < rv, {6,Q} >
can be proved to only depend on ¢(# = 0). To this effect a sequence s of
smooth functions on IR is defined by

(3.31)

- (3.32) | Ps(t) = ¢(§),

with ¢ a non negative non decreasing function such that

() =0 ift< %
b)) =1 ift>1

Consider for any ¢ in C&"([O, T) x RY x SY') the function @165 which is an

admissible test function in (3.21). Singling out.in (3.21) the term which

involves ¢} leads to
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As ¢ tends to zero the left hand side in the above equality tends to
< 1v,{¢, @} >. Defining

$(t,2,6) = §(t,2,6) — 40, 2,£)

permits to rewrite the right hand side in the above equality as
- 0Q / 7 ron 0Q

uths 4 —dv.

ST Or #(0)5 > +/|Rf+l /sév B2, sty ar

Since 1§ vanishes outside (6/2,6) and is of the order of 1/8 inside (§/2, §)
while ¢ is of the order of § on (6/2,6), the second term is bounded by

C ; d
f!R - /S » X(s/2,8)(t)dv,

which tends to zero with é. The remaining term, which only depends on $(0)
thus tends to < 7v, {¢, @} > as § tends to zero which proves in turn that
the latter only depends on ¢(0). o

Remark 3.6. In the context of Remark 3.5, it can be further deduced that
(3.33) v has a trace at £ = 0.

Property (3 33) is a direct consequence of (3.20} in Remark 3.4 once it
is noted that by virtue of the definition (3.17) of Q

oQ
5= p(z)r?,
and that p(z) is bounded away from zero. ' ]

We now return to (3.29) and propose to further analyze its structure as
a transport equation.
It is tempting to introduce the followmg system of ordinary differential

equations:
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T _ 2808 - (V + 20 Bes,

ds 9¢; 7
(3.34) i 0<i<N,

d€; _ 9Q - 8Q _ -7\

“"'"; = "5&:(%5) + (J;Zo b;;(y$§)§g)‘£::

together with its initial conditions
(3.35) Fs=0)=y" , &s=0)=¢*

Since the right hand side of-(3.34) is a locally Lipschitz functions of
(7,€) on RN! x RN+ (note that @ is a quadratic polynomial in ) the
system (3.34)-(3.35) admits a unique local (in s) solution. We are exclusively
interested in frequencies that belong to the unit sphere SV and thus constrain
£* to be an element of S¥. In such a case multiplication of the second
equation of (3.34) by £; and summation over i (0 < ¢ < N) implies that the
local solution (g(z), &(s)) satisfies

[E(2)* =1

over its interval of existence. Consideration of the first equation of (3.34)
implies in turn that |J(z)| remains bounded over the interval of existence
since the functions of y (of = actually) that enter the expression of ) are
uniformly bounded. Thus both |£(s)| and [(s)] remain bounded over the
interval of existence and the system (3.34)-(3.35) admits a unique global
solution (in s) for any set of initial conditions (y*, £*) with £* ¢ SV,

* Recalling (3.29) we conclude that £y~ remains constant along the integral
curves of (3.34)-(3.35) that live on le,V o .S'év . We have thus proved the

LemmMa 3.2, In the context of Theorem 3.3, &ov remains constant along the
integral curves of (3.34)-(3.35) that live on lRf oy Sy, o

Remark 3.7. Because Remark 3.4 states that {g = 7 is not zero on the
support of v Lemma, 3.2 actually provides a description of v itself at any
point of the integral curves of (3.34)-(3.35) with [¢*] =1. 0
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Remark 3.8. If the initial conditions y* and £* of (3.34) are such that
Q") =0

it is easily proved through the computation of d/ds (Q(T(s),&(s))) that

(3.36) | Q(E(s),€(s)) = 0,

for the solution (3(s), E(s)) of (3.34)-(3.35). o

Remark 3.9. In the context of Remark 3.8, this long remark is aimed at

proving that the integral curves of (3.34)-(3.35) that satisfy

(3.37) {-IE =5
| Qy",¢") =0,

can be interpreted as the projections on IR;V 1 x Sév of the integral curves of
some Hamiltonian system on lR;V oy I_Rfsv *1 with the same initial conditions.
To this effect the following system of ordinary differential equations is

considered:

ds — & \[¢] .
(3.38) 0<i<N,
LAY
\“—;'"“—ayi (-I'a)( 7C):

together with its initial conditions
(3.39) Hs=0)=y" , {(s=0)=("

The Lipschitz character of Q/|¢] on IR‘;,\r oy lRéV *+1 implies global existence
and uniqueness of the solution of (3.38)-(3.39) for any set of initial conditions
(%, ¢*). Note that if ¢ = 0 then {(s) =0 for any s > 0. |
Further the associated Hamiltonian @/|¢] remains constant along the
integral curves of (3.38)-(3.39). Specifically if the initial conditions (3!, ¢¥)

are such that .
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¢ £ 0,
3.40
( ) { Q(yﬂ, Cﬂ) = 03

then {(s) # 0 and Q(i(s), {(s)) == 0 along the integral curves of (3.38)-(3.39).
The homogeneous character of @ in the variable ¢ implies that

((s)
(3.41) Qo(s), == B =0,

along the integral curves of (3.38)-(3.39) with initial conditions satisfying
(3.40).

Using once again the homogeneous character of degree 2 of Q in £ easily
implies that (§(s), ((s)/]((s)] = f(s)) satisfies

diii  8Q,. - L nx
r ";iy; = Eg(y: f) - Q(ys 6)5‘5)
(3.42) ¢ N Osis<h,
€ 8Q,. - 0Q - ~z\z .
\ s = “5?};(%6) + (J; '5)—%:(31,5)6:)5”-
which by virtue of (3.41) reads as
i
(= w6,
(3.43) J ' . 0<i< N,
i 8Q,. . L YAy
& =5 D+ (‘; 5y 065

~ The initial conditions (y*, ¢t & ¢/1¢Y) to (3.43) satisfy
{ ¢ esm,
Q¢ =0

We set

{y* =y,
=g
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recall (3.36) in Remark 3.8, and conclude that

{'ﬁ(s) = §(s),
E(s) = E(S)ﬂ

whenever (y*, £*) satisfy (3.37). Note however that systems (3.34) and (3.42)
{(which both live on [R;V xS é\" } differ by a constant coefficient (V-2 versus
1) in the first equation; but the accompanying term vanishes in both (3.34)
and (3.42) whenever the initial conditions (y*, £*) satisfy Q(v*, &*) = 0.

We have thus established that the projections (§(s), £(s)) on IR;V Hxs N
of the integral curves of (3.38) are precisely the integral curves of (3.34), along
which the measure & v is transported, whenever the initial conditions (¥%,¢H
to (3.38) satisfy 7 + 1, Q(y!, ¢¥) = 0.

In the seq::+: the integral curves of (3.38) will be referred to, somewhat

inappropriately, as the “bicharacteristic strips”. o -

Remark 3.10. This equally long remark is concerned with the initial con- -
ditions associated to the transport equation (3.29). It demonstrates that the
knowledge of the trace of v at time ¢ = 0 (a meaningful concept according to
Remark 3.6) will permit through application of Lemma 3.2 to recover all of
the measure v. In other words any point in the support of ¥ can be reached
by one (and only one) integral curve of (3.34)-(3.35) and that integral curve
intersects the hyperplane yy = ¢ = 0. _

Indeed let (§,£) be any point in lRf;‘r o Sév in the support of v. Then,
according to (3.17),

ey Q8 = 0.

We claim that any point (§,£) satisfying (3.44) can be reached by an
integral curve of (3.34)-(3.35), which is obvious, but also that such an integral
curve will intersect the hyperplane y; = £ = 0, which is not so obvious. To
this effect the unique integral curve to (3.34) with initial condition

(3.45) Fs=0=g , &s=0)=§,

is considered. It satisfies, by virtue of Remark 3.8 and (3.44)
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[ T2(5) = ST E6) = olz(e)eo(o)
(46) | %%9(3) = ug;%(ﬂ(s),f(s)wr > %Q(g(s),‘g(s))"éj(s))'éo(s)
=0 7%
. N aQ _ - — N
_ @ 5y, T EE)Eulo),

~

- where 7(s) = ((s), 7(s)).
The second equation of (8.46) implies that &,(s) has a constant sign
which implies in turn, upon inspection of the first equation of (3.46), that

To(s) is monotone. We shall prove that
(3.47) l€4(s)] is bounded away from 0,

which implies that
lyo(s), REay +oo.

Thus there exists a value of s for which ,(s) = #(s) = 0.
It remains to prove (3.47). A sequence s, with

{ {8,] — +o0,
Ifo(sn), — 3 = hmsel!{,gﬁ(s),a

is considered. At the possible expense of extracting a subsequence (still

indexed by n) we may assume that
E(sq) = £ in SN,
(348) | P(E(sn)) = p° R,
A(Z(s5)) = A R

Since the integral curve of (3.34)-(3.45) satisfies
Q(F(s), &(s)) =0,
we are at libgrty to pass to the limit in
Q(F(sn),&(sa)) = 0.

Recalling the convergences (3.48) we obtain
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/ N
€Y+ (€1 =1,
=1
N

PPECY = > a e £ =0,

\ ,j=1

which proves that ¢ = |£8° | # 0. Note that the boundedness properties of
p(z) and A(x) have been implicitly used in the second and third convergences
of (3.48). O

As a conclusion to Paragraph 3.2.1, we would like to emphasize the con-
trast with geometrical optics, a contrast most striking at this point of the
argument in our opinion. To solve the eiconal equation one must transport
the value of the initial phase along the projections of the bicharacteristics in
physical space (cf. Remarks 2.3, 2.7) whereas the transport equation for the
H-measure is solved through a simple transport of the (meaningful) value
of the H-measure along the projections of the “bicharacteristics strips” on
IR;:‘I o S’év . The latter projections are well defined for all “times” s. In all .
fairness, it should be observed that the idea of integrating the eiconal equa-
tion and the transpbrt equation in the whole phase space ~without projection
on the physical space- is not new. It is precisely at the root of Maslov’s ansatz
(cf. e.g. [}). The present approach does not however require the introduction
of Maslov’s index because only the modulus of the amplitude is needed here.

3.2.2. The initial condition for ».

It has been established in Remark 3.5 that 8Q /87 7v has a trace at ¢t = 0
which is defined through < 7, {¢, @} >». Our goal in the present paragraph
is to compute this trace from the only knowledge of the H-measure associated
to the initial conditions for (3.1). Once (and if) such a task is completed,
a full description of the H-measure v will be achieved according to Remark
3.10.

Our method follows premises similar to those of the method undertaken
by L. TARTAR in Section 3.4 of [15] in the different case of a scalar transport
equation. To this effect we are forced to revisit the proof of Theorem 4 (or
more exactly of (3.18)) -proof which can be found in [15}- and to avail our-
selves of slightly different test functions. Specifically we consider throughout
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this paragraph an element P of ¢, (RY +1.R) with y-independent principal
symbol and apply it to (3.1). Its symbol p(y, £) is defined as follows

0/ &Y — 20 Ui T
{p(a) * (e )

p(,€) = p° () (7, n)(= p°(€) (£o, -, &),

where
(3.49) p° € C=(s™),

and

(3.50)
x(m,n) € C°°([RN+1) 0<%(r,m) <1, %(r, n) =0 around (ryn) =0,

x(r,n) = 1if 7 + |n|? is large enough, |
x(s8) €C°(R), 0 < x(s) <1, x(s) =1around s = 0.

The function x(s) will be of use in the proof of Lemma 3.3.
Since the symbol of P does not depend upon y = (¢,z) P commutes
with the various differentiations, i.e.,

EQPU_P(%) , 0<i<N.

Applying P o @ (where 6(t) was defined in (3.13)) to the first equation
(3.1) yields

(3.51) N
5 (#=1PO %) - 2 (o reg))

PR ) + 2 (1 ael) - ¥ s (Praal035)) =0

where [P, @], the commutator, has been defined in Lemma 3.1 as PQ —QP.
Note that, appealing to Lemma 3.1,




1840 FRANCFORT AND MURAT

Kgc!éfﬁo[Pp] %—O[P‘O]
def .
Z [P,az‘j]xZE";O[Paaijl,lSJ <N,
i=1 :

are elements of ¢°(R" *1IR) with respective principal symbols k3(y, £) and
k3(y,€) given (by virtue of (3.12)) by

B8 = & Z?;; =
(3.52)

dp° Ba; )
ki(y,€) = Z&afgn 3k LSiSN.

‘ln—

Equation (3.51) is in turn multiplied by P(88v¢/dt). Notation (3.13) is
recalled and a straighforward computation leads to

19 o p—
3 57 PEIPVEP + 3 () PV PVF}

i,7=1

86 v N . 00 Ov
~{Pleg; 57 )PVs - ;} aij(z) PV P(5 5 —)}

(3.53)
—RE{ Z (a”(a:)PV*? PVUE)}

i,5=1

—~ Re{( Ko VF + 2 K;Vi)PVg} =0.
j=1

Multiplication of (3.53) by an arbitrary element ¢ of C$°(RY), integration
over RY and appropriate integration by parts is performed. Upon defining

(354  R())= o f p(2)|PVE + Z ai5(z) PV PVF)pdr}(t),

sJ =1

we obtain, for every t in R,
(3.55)

dRs(t) IRM) | Rey / (Z a,J(x)PVsPVo’ )dm}(t)

i,j=1
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N ——teee e,
-Re{ [ (Plog )PV~ Py 5 @PVEP(G; 5o0)) e ds}o)

-—Re{/ (—Ko Vg5 +Z K; VS)PVegodm}(t) = (.
J=1 ,

All quantities entering (3.55) (including R¢) are well defined in view of
the smoothness of the solution v¢ to (3.1)-(3.3). The various integrations by
part leading to (8.55) are also licit as a result of that smoothness.

Remark 3.11. The remark is aimed at proving that, at the possible expénse

of the extraction of a subsequence,
(3.56) | R(t) 228 R(8),

uniformly on any compact interval of IR.
Indeed define

(1) = o f (P()PVER + Za.,(m)Pve PVF de)(t).

i,5=1

The energy estimate (3.4), the compactness of the support of 6(t), and
the boundedness properties of the various elements of °(IRV*1;IR) entering

formula. (3.53) easily imply, upon integration of (3.53) over RY, that

4D (t) is bounded in L*(R),

independently of . Furthermore D¢ is bounded in L*(IR) by its very defi-
nition. Thus D* is a bounded sequence of absolutely continuous functions,

which implies that
Df  is bounded in L*(R),

independently of ¢ ; therefore
(3.57) PVE(t) (0£i<N) is bounded in L®(R; L*(RY)),

independently of ¢.
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By virtue of estimate (3.57), an argument similar to that used above for

D¢ demonstrates, upon consideration of (3.55), that
R is bounded in H'(R),

independently of ¢, which yields (3.56). O
We now multiply (3.55) by an arbitrary function (¢) in C§({0,T)) and
perform the integration by parts on [0, T). We obtain
(3.58)
£ 2 (3 a'ﬂb :
_ H(0)RE(0) — = f f (o) PV + Z as5() PV PVF )p oda di

3,j=1

+ Re{ / ] a,J(:c)PVE ey )da; dt}
RN V5T dz;
89 dv* r ¢ o 08 O
+ Re{ fu /[R Plps; =7 PV — 32.1 aij(2)PV{ Pl 5— ))wdx dt}
T
— Re{f / (o1 Ve g EK Vs)PVO" o do dt} = 0
o JR” =

We now propose to pass to the limit in each of the terms entering (3.58)
as € tends to zero. At this point of the argument the difference with the proof
of (3.18) in Theorem 3.3 lies in the non compact character of the support of
3 in (0,T), which explains the presence of the non zero term ¥{0)R*(0).

By virtue of (3.56) the first term of (3.58) tends to —y(0)R(0).

As ¢ tends to zero the fourth term in (3.58) tends to zero. Indeed, for

example,
06 Ov© Ovey
P (p 8t Bt ) P( ( at /)

Since §6/0t is identically zero on {0, T the first term in the above formula
does not contribute to the computation. The second term in that formula
converges strongly to zero in L*(IR™*1) because it is the result of the applica-
tion of the commutator [P, 80/8t] -an element of % ~1(R™V*;R) according to
Lemma 3.1 -to a bounded sequence in L*(IRY*!). The reader will undoubt-
edly object that p 8v° /3t is only bounded in L(R; L*(R")) but this latter
obstacle is alleviated through a convenient rewriting of (80/8t) (8v°/0t) as
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(06/08t) 6 (9ve/bt), with 6 in Cs°(R) and 8 = 1 on the support of 06/8t¢, in
the previous formula.

The three remaining terms in (3.58) will be handled in an identical
manner. We illustrate the process on the first part of the second term,

namely,
f / ()| PVE |2<p %Y o d,

which, upon appealing to the cut-off function ;5 introduced in (3.32), reads

T 8 e 5
£ /E;N.P(ﬁ) IP%EP‘P%’QL‘& dzx dt-}-l /E;N p(“"’)'P%e'z‘P'gf-(l — s)da dt.

In view of estimate (3.57) and since 1 — 4 vanishes identically outside (0, §)
the second term in the above expression is at most of the order of § indepen-

dently of €.
For a fixed 6, ¢ 5 is compactly supported in (0,T) x RY x .S'é\r and a
direct application of Theorem 3.1 and of Lemma 3.1 (especially (3.11)) yields

ha
< v, p(e)r*p(r,p)P B >
as limit of the first term when ¢ tends to zero. But, recalling (3.30) in Remark
3.5,

] J o
lim < v, p(z)r*|p°(r, ) ¢ —at?-zba > =< v, p(z)r21p’(r, n)? 5?— >,

and thus

&2
i [ [ renpviere 2 aza
0
=< o@D B il e 5 >
Upon passing to the limit in the remaining terms of (3.58) and collecting

the resulting expressions we obtain

~ORO) - L €5 4 3 e )l o 2y

t,j=1

(359) +<w, (Z (e b 22)r ()l >

1,j=1
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N
~ <L v, (=T kY + Y 05 KT’ (7,m)pep >=0.
=1
By virtue of (3.17), (3.19), we have

N'

9
<7, P(E)T2IP (r,n)? wa—ftba > =<, ) a(@minlp’(nn)fe 5 >,
i,7=1
which yields
<oy e 2L s n, Z ass(eymansle*(ry o 22 >
* LAY 6t A if il s It y
1,j= -

as 6 tends to zero. Using the above identity together with (3.52) as far as
the last term of (3.59) is concerned we obtain :

~ HOR(O)~ < 70, ola)r o (p°(r,m) i) >

3.60) T JZ*]‘Z:J’?J B 2 (6 mPap) >

: N
3.- <9p 2 6a!j 0 2
t e (o= X 00 i) () = 0.

In view. of the definition (3.19) of @, (3.60) may be expressed as

(3.61) ' H(0YR(0) =< 11, {, Q} >,
with |
(3.62) $t,2,) = [P°(r, )P0

(¢ is defined on [R,;}"H X .S’év on which 72 + |p? = 1).

It remains to compute the quantity R(0). The computation is burdened
by technical difficulties. It would be tempting to appeal to (3.3), replace
Vo, VE (1 £ < N) in the expression .(3.54) for RE(t) taken at ¢ = 0 by
B¢ and grad * respectively and pass to the limit in the resulting expression
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which would then involve a different family of H -measures, namely those
associated with the initial data. Such a procedure is however incorrect since
the quantities that enter (3.54) are the traces of PV (0 <i < N Jatt =10
and are not equal to the image of the traces of V¢ (ie., B¢ and grad 4°) under
P, which is by the way a meaningless notion since P is a pseudo-differential
operator acting on functions of N + 1 variables.

This difficulty is circumvened through an adequate rewriting of R°(t) as

(3.63) RE(t) = G°(t) + T=(t),

with Q¢ defined in (3.78) below.
Further it will be proved by virtue of (3.73), (3.79) and Remark 3.13
below that

7¢ -0 in D'(R),
(3.64) { 0 (%)

Qfﬁ — Q(t) uniformly on any compact interval of R,

as £ tends to zero.

With the help of (3.64), R(0) will be identified as the limit ((0) of
Q°(0); that limit can in turn be explicitly computed (cf. (3.93)) in terms of
‘the initial conditions #° and ~¢. _

To this effect we remark that the e-independent compactness of the
support of the initial conditions together with the property of finite speed
of propagation of the solution v* to (3.1)-(3.2) (cf. e.g. | [11], Theorem 6.10,
p. 364) implies that

(3.65) 8v° is supported ina compact subset X of IRi\: ;" 1

where 8 has been defined in (3.13), and K is of the form
K =[Ty, T3} x K",

where —00 < T} < T3 < +oo and K’ is a compact subset of RY (which
contains K the support of the initial conditions 8¢ and 7). '
We then consider { to be a non negative element of Ce(RY ) with
¢(z) = 1 on K' and introduce the pseudo-differential operator A of order
1 (element of YL(RY;R)) with associated principal symbol |
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s 1/2 1/2
Ma,n) = @) (D @) = (@) A@m )2,

1,5=1

Note that although A(z,7) is not C* at 5 = 0, A(2,n) can be viewed as a
bona fide principal symbol (in the sense of (3.8)) since it is to be multiplied
by a cut-off function around n = 0. Note also that A maps HY(R") into
L*(RY). We then set

vy = C(a:)-./p(m — — 1A%,
O C(a:)«/p(:c) -5}—~ + iAv®.

(3.66)

Let us emphasize that the prq;ectmn on [RN of the supports of 'U:i: are com-

pact.
Since A only acts on the spatial directions the energy estimate (3.4)

immediately implies that
(3.67) S (resp. v&) — 0 in L®(R,; LHRY)),

as ¢ tend to zero.
Further it is easily checked through application of Lemma 3.1 that v

and v€ respectively satisfy

v @ % oy~ g, 2
P at - ¢ Oz;
(3.68) { =
' vt Jv® Ov* ' e
C(z)v/ p(z) ot L ==Ry T ; Ri a—xi"i'RU )
where
Ro = [(/, —iAl, R; = ¢* Z[au, ,1<i <N,

j=1

are elements of Y2(RY;R) and R’ is an element of Y1(RY;R). Since once
again the R;’s and R’ only act on spatial directions, the energy estimate
(3.4) perrmts us to rewrite (3.68) as

C(:C)v p(z) 6t +2A'U+ =7'+a
C(m)\/p(a: v tAvE = rf,

(3.69)
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with 75 and r¢ bounded in L®°(R¢; LX(IRY)) independently of ¢.
Finally upon recalling (3.1) the initial conditions for vi and v% are
[ 5(0) = ((=)V/A(E) e (0) - iAo (0))
] = C(fc)\/ﬁ(—mﬁ — iAy* = v,
2(0) = C(@)v/o®) 2(0) + A (0))
[ = C(m)\/p(_w Fidy =l
and in view of (3.3) v§, and v, converge weakly in L2(RY) to zero as ¢

tends to zero.
Define for 6(t) given in (3.13) (6(¢) = 1 on on [0, T7) and for the operator

P considered at the beginning of Paragraph 3.2.2
Q3 =3[ (1PO5)2 pdsl)
@) ) Qe =3[ (PR pasie),

| @°(2) = QL(1) +Q(2).
For any smooth function 4 in C$°(R)

(3.70)

Lo ®vaa=1 [ aP@sE+1PEe )P
® RN+

1

=7 [ (/5P —inP(we)

~ (VB — it PY(6o%) + (R o 6)o°]?
(72 +HCVBPV; +iAP() ~ [(\ /B + iA, PI(0)
+(R'o *-'3’)'0"5|2}<wf’($)¢(’»‘)dhc dt

=5 [ @IPVE 4 S ()P PVRp(ei(tda dt

1,j=1

+/ v (RY o Q)veiprp dax dt,
RN+1

where R,R', are elements of $I(RM*;R) and R” is an element of
PRV R) obtained through multiple use of Lemma 3.1 in the second
and third equalities of (3.72). Note that we have implicitly used the fact
that ¢ = 1 on the support of § 8v¢ /8y; (0 < i < N) in the last equality of




1848 _ FRANCFORT AND MURAT

(3.72). The reader should also be aware that commutators such as [—iA, P}
are not totally meaningful since A is an operator acting on IRiV , while P
acts on IRj:':;*' . A completely rigorous proof of (3.72) would involve an ar-
gument of the type used in the proof of (3.85) below : the sequence V¢ is
replaced by Q(V*®) where Q is a pseudo-differential operator of order 0 on
[Ri\f F1 which makes PQ a pseudo-diﬂ'erenfial operator on IRQZ H (for more
details see (3.80)-(3.84) below).

Since pyv® is supported in a compact subset of IRQ: 1, (3.4) implies

(cf. e.g. [13], Corollary 4) that
Y =0 in Cl(Ry; L*(RS)),

as € tends to zero, while (R" 0 8)v® converges weé,kly to 0in L2(R¢; L2(RY)).
The term
/ v (R" o Nveprp da di
RN +1

converges to zero as € tends to zero. We have thus proved that, for any v in

cr®),
(3.79) tim [ RE@pp(e) =ty [ QeI

We now introduce Py and P_ to be elements of HORN;R) with respec-
tive principal symbols

50 (z,7) (resp. % (= =p? _ Mz
B+(2,m) (resp. (=, 7)) p(m:FC(a:)(p(:L‘))l/z)

(3.74) v
"—"—p"(nﬁ(% /)-

Note that because of the various properties of A(z) and p(z) it is readily
verified that Py belongs to ¥*(RY;R).

Remark 3.12. Defining the mappings $* from RY x Sff =1 into Sg’ as

_(_ p@) 2 :
e = Gayrdans) o 1SS

Alz)n -7 )1/2
p(z) + Alz)n -9/

(3.75)

| SE@m =(
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for any z in [R,i.v and any 7 in .S',‘;“‘r ~1, it is immediately noted, by reasons of

homogeneity, that

(3.76) Pa(z, 1) = p°(5F(z,7)).

0

Because Py (resp. P_) only acts on the spatial directions (i.e., in (z, %)),
application of P, (resp. P_) to the first (respectively second) equation of
(3.69) and consideration of estimate (3.67) yields -

(3.77) ()@ g7 (Pavg) £ih(Paog) = 7,

where 75 and #¢. are bounded in L®(R,; L2(IRY)) independently of e.
Set

(@30=7 [ 1B 00tz

(3.78) 1 G2@ =7 [ 1P 00 @)Pote)ds,
LG5 (t) = Gty + §=.(1).

The definition (3.78) of @° is similar to that of Q¢ in (3.71); Note
however that because the operators Py only act in the spatial directions
they are applied in (3.78) to the values at any given time £ of the fields 6,
while, in (3.71), the operator P acts in all direction, so that it has to be
applied to # v and the resulting fields P(dv%.) are then evaluated at time t.

Remark 3.13. In the spirit of Remark 3.11, it can be checked that, at the

possible expense of the extraction of a subsequence,
Q°(¢) - Q(t) uniformly on any compact interval of R.
Indeed, in view of (3.67),

Pi(8(t)o%(t)) is bounded in L®(R,; LX(RYY),
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and thus multiplication of (3.77) by (% @62 P05 will yield an equation of the
type (3.55) for @%.(¢) from which the equicontinuity will be deduced. O

We now prove that

lim /[R Q;(t)gb(t)dt:;i_% f[ﬁ Q5 (£)y(t)dt,

(3.79)
tim [ Ge (o = i [ Qf (Do)

We only prove the first relation in (3.79). The proof of the other equality
is identical. To this effect notation (3.13) and definition (3.66) of v5 are
recalled and the following expression is obtained

g5, = ((2)v/p(z) V§ — i6' A(6v°),

where @' is an element of C§°(IR) with 6’ = 1 on supp 8.
Since §v° is compactly supported in lRi,V'H (cf. (3.65)) it can be expressed

v = A (Z (gve )

~ where AZ! is to be seen as the inverse of the Laplacian with Dirichlet bound-
ary conditions on a domain large enough to contain the z-projection K’ of
the common support of the Vs (and of v¢) and ¢ has been defined to be
identically 1 on K’. Thus 6v$ reads as

s | N

(3.80) 605 = ((x)v/p(e) Vi —i6' > A; VF,
: j=1

where

(38'1). Aj=Ao A“lo-g-OC |
. 7 s 3333' ’

We now introduce the pseudo-differential operator 2 in zbo(lfif H;".lR) with
principal symbol (independent of y)

(3.82) wWi(§) = (1-x ﬁ))
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where x has been defined in (3.50).
Consider a cone C, of angle & and direction 7 = %1, 5 = 0 in RV,

Then, if (n,7) € RY*! lies outside Co,

in which case
I7]- 1

. > .
\/T2+|’?l2 \/14-;542-;

For any (small) o we are at liberty to choose x in (3.50) such that

1 if[s] < sin ¢,
x(s) = : :
0 if |s] > sin 2a,

= sin .

in which case
x( || )= 1 if(n,7) € Co,
72 + In|? 0 if(n,7) & Cog,
0 if(y, T) € Cq,

Toif (77) T) g C2a-

By virtue of Remark 3.4 we are in a position to choose & such that Cp, N
supp» = {) and direct application of Theorem 3.1 and Lemma 3.1 yields, for
any ¢ in C°(R)™) and any j with 1 <j < IV,

go that
wﬂ(y,g) = {

—0
lee(X = VM2 @y+2) T5< me®x2(Inl) >=0,
since x = 0 outside Cy, and 72 + [7)?> = 1 on supp v. Thus
(3.83) (1-Q)Vf >0 strongly in Z2 (RN*),

as € tends to zero.
Expression (3.80) for 6v5 is then rewritten as

N
6us. = {((=)v/p(z) Vs —i6' ) A;(QVf)}
i=1

N
~i6' Y A;((1 - Q)VF).
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~ It is then remarked that 8'A ;o8 may be identified with the pseudo-differential
operator of order 0 (an element of %2(R)"**;IR)) whose principal symbol is

(3.54) )Mo~ @) (1 - x(\/—,rz—'{'-——,;;ﬁ))-

(The above expression is easily verified to be an admissible principal symbol

in view of the properties of the support of x.)
Note however that A; o (1 —~ ) is not a pseudo-differential operator on
IR;V *1 but that, because of (3.83) together with the definition (3.81) of A;,

0'Aj0(1—)VF =0 strongly in L*(R)*?).

(Aj, which acts omly in the spatial directions, sends boundedly
LA(Ry; L*(RY)) into itself.)

Thus the H-measure x; associated to (a subsequence of) fv5 identifies
with that of (a subsequence of) {((z)+/p(z)V§ — 0" Zj\;l A;(QVf)} which
can in turn be computed from » through direct application of Theorem 3.1

and Lemma 3.1. We obtain

k1 = lg(y, §)*v,

where, in view of (3.84) and the definition of the symbol A(z,7), |

2(3,€) = ((z)V/ p(z)7 — 6'C(2)/ Alz)nm (1 = x(Inl))-

"The sequence V7 (0 <4 < N) has its support in K {cf. (3.65)) on which
¢ and ' are identically 1; further, according to the localization property
(3.17), the support of v lies in the null set of Q(x,¢); finally it does not

intersect the support Czq of x. Thus x4 also reads as

t4 =W p(2)r —/ Alz)mmi*v,
and ,
. (3.85) supp k4 C {{(y,é) € [R?r"'l x S [Vp(z)r = —/A(z}m},

where we recall that x4 is the H-measure associated to (a subsequence of)
ovs .
+
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The sought equality (cf. (3.79)) is then an immediate corollary of the

following

LEMMA 3.3. Let P be an element of 1,b0(lRN 1 R) whose principal symbol

® is of the form p®(n,7) (with p° € C°°(SM)). Let II be an element of
$ (RN R) (which thus maps L*(R") into H~! (RN)) with principal symbol
7(2,7n). Define P to be an element of qu(IRN R) with pr1nc1pa1 symbol $°
defined as

N Y T WY
p(zn)(=p (n,n(z,9)) =p In? +n%(z,n) ln|2+7r2(a:,7?))

Assume that w® is a compactly supported sequence of elements of
L(Ry¢; L2(RY)) with the following properties:

w® — 0 weakly in L2(RY ;1)

(3.86) N
and strongly in L*(R,; H 1(RY)),

as ¢ tends to zero,
(387)  suppw C{(1.€) €RLY" x 7Y, | 7 =n(z,n),n # 0,7 # %1},

where w is the H-measure associated to (a subsequence of) w®.

Then (for a subséquence)
[Pw“’](t) P(w*(t)) > 0 strongly in L, (RY'{Y),

as € tends to zero. _ (]

This lemma, once proved, is applied to w® = fvi, w = k4 (the H-
measure associated to (a subsequence of) #v5.) and to IT = F1/(¢ VP)A (any
element of $'(R2;IR) with principal symbol F(A(z)n - n/p(2)?). Upon
invoking the spatial compactness of the support of v§, (3.67), (3.69), Aubin’s
compactness lemma (cf. e.g. [13}, Corollary 4) and (3.85) Lemma 3.3 applies,
which immediately implies that the sought equality (3.79) holds true.

Proof of Lemma 3.3. Since P and P are uniquely determined by p° and $°,
up to pseudo-differentials operators of order —1 which are bounded mappings
from H~(Ry **) into L? @R *) and HYRY) into LHRY) respectively,




1854 FRANCFORT AND MURAT

the second convergence in (3.86) enables us to focus on the principal part of

P and P and to choose for symbol for P, #(z,n) with

Bz ) = 5" (2, 9/l ~ x(Inl)),

where x(t) has been defined in (3.50).

We reintroduce in this proof the pseudo-differential operator £ in
(R R) defined through its principal symbol in (3.82). Note that
depends on .

Let () (resp. 6(2)) be an element of C(RY) (zesp. C$(Re)) with ¢(z)
(resp. 6(¢)) = 1 on the RY (resp. R;}-projection of the common compact
support K of w® and remark that, through direct application of Theorem 3.1

supp w C {(y,€) €RYM x SV |y = (e, 1)

(3.88)
with ((z) =1 and 8(¢) = 1}.

Then, as € tends to zero,
(3’89) ”Ca(]‘ - Q)wslliz(m;\"i'l) —< W,Xz(l"ﬂ) >.

Furthermore it is remarked that 8Po¢ o is a pseudo-differential operator
of order 0 (an element of z,bo(lRiv +1.R)) with principal symbol

() (x, %)C(m)(l - x( “,7,,‘?'1‘13))

The estimate of the term [Pw®)(2) — P(w*(t)) is performed with the help of
the following decomposition:

[Puri(t) - Pwt(£) = P - 6P o C 0 Q)ul) — BCO(L ~ Qurl(D).
Since P acts boundedly on L2(RY),
FmIPCO0 ~ DO oy < CRICOL ~ Dl o,

where C is a constant that does not depend upon ¢. By virtue of (3.89) we

obtain

390) Tl PG8 - W ayes <€ < x*(lnl) >
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On the other hand the limit of the term $[{P -~ 0Po(o Q}w] (¥ €
Cee° (IR;,V *1) can be immediately computed through direct application of The-
orem 3.1 and Lemma 3.1, which, in view of (3.88) leads to

”’IIJ{P_'GIB ogo ‘Q}#”e”iz(ﬂif'ﬂ) < w, ¢le0(§) *ﬁo(m: Tg’,’)(l - X(|77|))|2 g

=< w, %52,190(7?: T) — po(??$ 71"(:1:, "?))(1 - X("?D)l? > .
In view of (3.87), the above convergence also reads as
1P ~ 6P 0 Co Q|12 s, =< w0, 9210 (m, T X)) >,
as € tends to zero.
The above convergence, together with (3.90), implies that, for any ¥ in
CeRy ™),

(391 TEml(PuIE) — P O Eagrs, < Co < @) >,

where Cy is a constant that only depends on .
Thus far the support of ¥ has only been restricted to be such that

x(s)=1, if|s]<sin a3
indeed we have not used the fact that
x(s)=10, if|s| > sin a.

Consideration of a sequence y, with

0<xn <1,
Xn(z) 720 ifs#0 andl ifs=0,

permits to conclude through application of dominated convergence that
<w, X?;(IT?D > w:_l{t)=0} >y

as n tends to +oo, where 1{y=0) denotes the characteristic function on Sév
of the set {n =0,7 = +£1}. '
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Since the H-measure w does not charge the points {n = 0,7 = :i:l}
(cf. (3.87)),
<w, Ip=o} > =0,

which in view of (3.91) proves the desired result. i

In view of (3.73), (3.79), decompositi;)n (8.63) and convergences (3.64)
hold true. By virtue of (3.56) and Remark 3.13 we finally obtain

(3:92) R(0) = G0),
where
(393) QO =g lm [ (Pyuial + IPvtoPlo(e)ds,

and v{,,v%, are given in (3.70). Note that 6(0) does not appear in (3.93)
since 6(0) = 1.
Denote by #; and #'.. the H-measures (defined on RY x SN=1) associated

to a subsequence of v5, and v&,. Then

- (3.94) G(0) = U< 74, 9% P > + < 7 12 P >},
Appealing to (3.76) in Remark 3.12 permits to rewrite (3.94) as

695 G0)= Moo (ST >+ < oo, ob*(SHP >,
Collecting (3.61)-(3.62), (3.92), (3.95) we finally obtain

(3.96) < 71,{4,0} >= %{< D, lem0,5-) > + < ey bremo,54) >},

for all ¢’s of the form

= Ip°(n, )P (t)e(x),

with p® in C=(S{), ¢ in C§°(RY), ¥ in C§P([0, T)).
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Invoking an immediate density argument permits to extend ¢ to be an
arbitrary element of C§°([0,T) x RN x § év ) in (3.96).
We have thus proved the following

THEOREM 3.4. The H-measure v defined in Theorem 3.3 satisfies, for any
¢ in C°(R, x [0,T) x S¥),

1
(397) <&, {$,Q} >==< {< Uy P(1=0,5-) > + < T, dz=o,5+) >}

where St and S~ have been defined in (3. 75) and Uy, are the H-measures

associated to vi,,v%, defined as
(3.98) vho = (/PB° T ilve.

In (3.98), ((z) is any element of C§°(IRY) with ¢((z) = 1 on the support
of B¢ and v¢, and A is any element of @bg(IRiV ;[R) with principal symbol

((2)(A(z)n - 9)*2. 0

Remark 3.14. Since #° and 4° are compactly supported in a compact set
K® on which {(z) = 1 (recall that ((z) = 1 on K’ and that K" - the RY-
projection of the support K of 6v® (cf. (3.65))- contains K°), the choice of
the specific function ¢ (in C(RY)) in the definition (3.68) of v%. will not
affect the H-measures #,.. Indeed direct application of Theorem 3.1 will

restrict the supports of & to K° on which ((z) = 1. This will be illustrated

in more details in Subsection 3.3. : 1

By virtue of Remark 3.5, < 1v, {¢, @} >> defines the trace of oQ /8T v
at time ¢ = 0. Equation (3.97) enables us to recover the initial value of the
measure 8@/t Tv and thus (cf. Remark 3.6) of v.

. Remark 3.15. As anounced in Remark 3.2, (3.18) is immediately recovered
from (3.97) by taking ¢ to be compactly supported in (0,T)xRY x § év since
insuchacase € , >=< , >.

Note also that the derived equation is indeed an equation for bov(= 1v)

‘and not for v, as previously emphasized in Remark 3.3. m}

Define at this point the measure 7.4 on IRi.V X S év as follows
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(3.99) SHnd>= [ HeSHe (e d),

4

for any ¢ in CP(RY x .S'N)
Definition (3.99) is eas:ly checked to define 74 as Radon measures and
(3.97) reads as

(3.100) <71, {$,Q}> = ji-{< iy, d(t=0)>+ <@, 4(t=0)>},

for any ¢ in C$°([0,T) x RY x Sév)

Remark 3.16. In the case where 3 have smooth enough densities, 74

identify with measures concentrated on the images of .S'j;‘r ~1 by the mappings
S*, u|

In the light of (3.100), Lemma 3.2 and Remarks 3.6, 3.8, 3.10 we can
finally restate Theorems 3.3 and 3.4 as ’

CoOROLLARY 3.1. The measure {yv is the transported value along the inte-
gral curves of (3.34)-(3.35) -that live on [Ri':'r +Hox S and on the null set of
Q- of its initial value

(3.101) TUe=0 = Eo¥je=0 = 77— (F4 + 7-),

4 (ﬂ?)f

where %4 have been defined in (3.99). o

Remark 3.17. Because of the specific form of S* defined in (3.75) the
measures T4 have their support on the null set of @), which agrees with the
statements that the support of v is included in the null set of @ and that
the curves (3.34)-(3.35) conserve the null set of @ (cf. Remark 3.8). Thus in

particular &, = 7 is not zero in formula (3.101). o

3.2.3. The limit energy density.

We remind the reader of our initial task, namely that of computmg the

limit energy density d of d° defined as
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1, 60
&*(2,8) = 5 [of 3“‘; )2 + Agrad v® grad v°)(z, t).

Recalling (3.15), (3.16) we obtain, for any ¢ in C5°((0, Ty x RM),
N
<de>=3 [ olte) [ 6@+ S ayle e a)
U B T e RO T RS

The support of v lies in the null set of Q(z,£) on which L(p(x)e?
+ Efj:] aij(2)§i {;) may be replaced by p(z)¢? thereby yielding

(3.102) <dg>= [ sllelt,e) [, e o).
v £

We have thus obtained the following

TurEoRrREM 3.5. The measure limit d of the energy density d*(z,t) defined
as

; 1 dv® '
d*(2,t) = 5 {p(x)(5;)? + A(z) grad v* grad v},

for v* solution to (3.1), (. 3.3), is given by
(3-103) d = p(z) f E2v(dz dt)
where v is defined through Theorem 3.4 or equivalently Corollary 3.1. o

3.3. Slowly modulated periodic initial conditions.

This final subsection specializes the initial conditions B¢ and +° to be of

the form anounced in (3.5), (3.6) of Remark 3.1.
Our first goal is the computation of the measures U4 and #.. associated
to v = (/PB° FiAy®. To this effect we note that, since 7® has a compact

support independent of ¢,
(3.104) v¢ = A7 (div(grad v°)),

where A~ is to be seen as the inverse of the Laplacian with Dirichlet bound-
ary conditions on a domain large enough to contain the common support K¢
of the ¥*’s. In the language of pseudo-differential operators (3.104) reads as

N 878
’Ya =§A! 'é;;:),
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where A; is the element of ¥~ (IR";R) with principal symbol —n:/inf?.
Thus

N
€ e or°
(3.105) oo =P8 iy (AA) (3L ).
i=1 ¢
But, in view of (3.5),
37 0o, =z Ba s Ba \¢
il R R (55;) @+2(zz;) @

thus (3.105) reads as

€ €
vis *C\/"ﬁ‘f:FzZAA [( ) X
i=1
where r§ converges to 0 strongly in L*(R") as ¢ tends to zero. The com-
putation of #4 is now reduced to that of the H-measure associated to (a

subsequence of)

w3 fFi Y AA; Oa
L= v w30 (22)7].
Denote by ji the R¥*! x RY ! valued H-measure associated to (a sub-
sequence of) (ﬁs,'(grad'y «)°) ; Theorem 3.1 implies that the support of i lies
on the set of points = where {(z) = 1 (cf. Remark 3.14).
The H-measures 7. and ¥_ are immediately computable from the know-
ledge of i and through application of Lemma 3.1 (especially (3.11)). We

obtain, -

o4 (de dn) =p(z) ueo(dw dn) + (A(z)n - fz)( Z nin;fbi;(dz dﬂ))

#,j=1

F 2(p(z)(A(z)n - )/ Z nj Relfioj(dz dn).

i=1

(3.106)

. We are left with the task of computing /i explicitly. To this effect, we
appeal to the vector-valued analogue of a result obtained (in the scalar case)
by L. TARTAR ([15}, Section 2) and P. GERARD ([5], Prop. 1.5 or (7],
Example 2.4). ' a
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LeMMA 3.4. Let v(z,y) be an element of [CPRY x TY)P such that

/ Yi(z,y)dy = 0,1 <i < P.
T
Then there exists a H -measure p associated to the whole sequence v° with
T
7(2) =10z, 2.
: €
It is given by

pij(de dn) = Z Yik(@)F;x(2)dz @ bxpipy(n), 1 < 4,5 < P,
kez¥
k30
where the ;1 ’s are the Fourier coefficients of 7i(z,y) (1 <i < P). O

Remark 3.18. It should be pointed out that this lemma remains valid when
7 is less regular (cf. [15], Section 2). ]

"The proof of Lemma 3.4 will not be presented here because it is identical

to that of the scalar-valued case. -
Direct application of the above lemma, yields

oo = Y |B(z)Pdz ® & ppe(n),
kezZN
k=0
fis; = 4n z kikjlox(z)Pde @ Sxpppy(n),1 < 4,5 < N,
(3.107) = .

fioj = —i2m ) k;r(x)(z)a@(z)dz ® Sk (1), 1 < § < N.

kezl
k0

.

Collecting (3.106), (3.107) finally leads to

Pa(dodn) = ) {o(z) |B(2) + 47°(A(2)k - k)|en()]?
(3.108) kez? :
- Fan(p(z)A(z)k - k)1/21m[ﬁk(:c)fik(m)]}dx ® 6k/’¢|(77)..
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The next step in our analysis is dictated by (3.101) in Corollary 3.1;
we should thus compute 7. These are given in terms of 7y by (3.99). We
obtain, with the help of (3.108),

<t0d>= 3 [ (o) @ + 1A Rl

kez¥N
k520

F 4r(p(z) A(2)E - &) *Imifu(2)a(2)]} (e, SF(z, |—’,§-|))dx,

for any ¢ in C°(RY x S¥).
Thus

<ind>= 3 [ (@B + e (A Dlax@)

kez¥d
k-0

F 4n(p(2)A()k - k) 2 Im[ By (z)@k(2)]}dz © 857 (2 p 1k (€)

and we can specialize Corollary 3.1 to the present setting as

COROLLARY 3.2. If the initial conditions for (3.1) are of the form

{ 7'(2) = ¢ a(, <),
p(e) = Bz, 2),

with a and f elements of C°(RY x T) satistying

/ B(z,y)dy =0,
T

then
(3.109) |
So¥e=0 =y ‘2 k§~ {p(2) |B(2)? + 4m*(A(2)k - k)|ay(z)f?
ko :

F 471'(,0(9:)}1(;3)&; . k)l/z Im{Bi(z)ar(z)]}dz @ 6S$(..-,,k/|k_f_)(£)s

where S* have been defined in (3.75) and ox(z), Bi(z) denote the Fourier
coefficients (in y) of a(x,y) and B(z,y) respectively. The measure & is
the transported valued of its initial value given by (3.109) along the integral
curves of (3.34)-(3.35) that live on [Ri;‘r 1 x Sév and on the null set of ). 0O
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Corollary 3.2 delivers as explicit an expression for v as possible in the
case where p and A exhibit an z-dependence. In the constant coefficient case
however the H-measure v can be expressed solely in terms of its initial value.
Indeed the integral curves of (3.34)-(3.35) that live on IRN'*'] x SN ¢ and the

null set of @) are

Volz) = plos + o Eo(s) = £o,

‘N K
Tle)=—(Qa&)s+v , Te)=& , 1<i<N.

i=1

We are interested in curves that originate on the hyperplane (y, = 0,
¥i = #;,1 £ 4 < N) and we conclude that

()t 8) = () + 3 2tit,0,6).

Jj=1
Upon recalling the expressions (3.75) for §% -which become independent
of z- we obtain the following

CoROLLARY 3.3. If, in the context of Corollary 3.2, the coefficients that
enter (3.1) are constant (i.e., if p and aij;1 < 1,7 £ N do not depend on x)
then

Ak
v(,t,6) = Z Z (Sq;(k/lk,))z {plbrta P

‘ Ak
2 ) i —_— ]2
. Ak
L 1/2 —
Fdn(p Ak - k) Im{Bi(z F (p Ak - k)L/2 t)
Ak

(e F (g gyt 4o 8 s (6)
)

Remark 3.19. We conclude this study by returning to our initial problem,
namely the computation of the measure limit d of the energy density d°. In
the constant coefficient case d was computed in Theorem 2.4. We now apply
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‘Theorem 3.4 with v given by (3.110) and obtain, in view of (3.103),
(3.111)
1 Ak ,
d=23 3 {olbu(e £ o)

+ rezV

k#0
. Ak ;
20Ak k e b A
+4x (A )lak(x & (pAk . k)1/2 t)]

Ak - Ak
e B E ot

+ 4w (p Ak - k)'? Im[Bi(z +
Expression (3.111) is identical to expression (2.64) obtained in Theorem 2.4
as it should be. | !
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