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Conservation Laws and Material 
Momentum in Thermoelasticity 
The main goal of this paper is to construct a Lagrangian function such that not only 
the well-known equations of thermoelasticity, but also material conservation laws 
can be derived. As action variables, the position xofa material particle and a scalar 
function i\ related to temperature are used. The material momentum for ther
moelasticity is derived. Here, by contrast to the purely elastic case, the material 
momentum depends on a time interval rather than on an instant of time. The 
balance of material momentum is integrated over time to produce a relation 
reminiscent of the impulse-momentum equation in classical mechanics. 

1 Introduction 

The development of mathematical fracture mechanics 
focused attention on new material conservation laws because 
they form a starting point for establishing path-independent 
integrals. These conservation laws were first derived for a 
static linear-elastic continuum. Numerous attempts have been 
made to generalize them for nonlinear, plastic, viscoelastic, 
and dynamic behavior. 

It turns out that these new material conservation laws fit 
naturally into a physical framework: they are related to the 
(material) symmetries of the Lagrangian function of the given 
system which in a static elastic case reduces to the strain 
energy. 

A natural obstacle prevents generalization to thermoelastic 
systems. The dissipative character of these systems precludes 
the generation of a Lagrangian for thermoelasticity by simple 
addition of new terms, involving the fields (which describe the 
thermal behavior) to the elastic Lagrangian. As long as we are 
interested in deriving the thermoelastic equations only, it is 
possible to overcome this obstacle by using adjoint fields as 
well as original ones in the Lagrangian. Such a formulation, 
however, is not capable of delivering the new conservation 
laws because the crucial quantity appearing there involves the 
Lagrangian itself. 

The current paper is an attempt to construct a Lagrangian, 
from which we can derive all known equations of ther
moelasticity, as well as new conservation laws. 

2 General Background 

The variational approach to many physical theories proved 
very useful over the years and will be followed here. For a 
system of particles, for example, we consider an action in-
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tegral, where the integrand is called the Lagrangian of the 
system under consideration and the independent variable is 
the time /. In various field theories, by contrast, we deal with 
a Lagrangian density because the integration is performed not 
only over an interval of time, but over a region of space V. In 
other words, the actions A have the following forms 

J'n 
L(t;xt,x2 . . . x„,V|,v2 . . . v„) dt 

for systems of n particles, and 

£(t,x;<l>,4>,<l)j) dtdlx 

(1) 

(2) 

for fields. Here x,- (/ = 1,2,. . . ri) denotes the position of the 
;th particle, v,- is its velocity, and all x*, \k are functions of /. 
In (2) <£ is a field (or fields), a function of both, and time t and 
space coordinates x, 4>, and <f>j denote partial derivatives with 
respect to time and xh respectively. 

According to the stationarity principle, by varying the 
dependent variables (x in the first case, <f> in the second), we 
derive the equations of motion for the particles or the field 
equations. In many cases we are also interested in con
servation laws for the given system. They can be derived from 
Noether's theorem [1] and are related to the invariance of the 
action integral under infinitesimal transformations performed 
on independent and/or dependent variables. 

The Lagrangian description of the continuum can be 
derived from (1) when the number n becomes very large and 
particles are densely distributed. x„(t) then becomes a 
continuous function of a material coordinate a (related to the 
original number of a particle n) i.e., x = x(a,0- Most often a 
displacement vector u = x - a is used for the description of a 
continuum rather than the position x itself. Then relation (1) 
transforms into 

A = 
J IQ J t 

L(n,t;a,v, vu)d3adt (3) 

where the integration is performed over the whole body B. 
Here v and v u denote partial derivatives of u with respect to t 
and a, (/ = 1,2,3). The usually accepted equations of an 
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elastic continuum are not, however, generally obtained from 
stationariness of the action integral (3), but rather by ex
tending well-known principles for the discrete systems of 
particles to a continuum. In other words, the introduction of 
the new independent variables a was not really exploited until 
1951 when Eshelby introduced the notion of a force on an 
elastic singularity [2], related to translations in a space. In the 
absence of defects, the relation obtained by Eshelby becomes 
a statement of conservation of field (or material) momentum. 

New conservation laws, associated with the properties of 
material space, have been derived by Gii'nther [3] and Knowles 
and Sternberg [4]. These conservation laws are closely linked 
to the path-independent integrals of defect (especially frac
ture) mechanics. A similar situation arises in particle 
mechanics where the conservation of linear momentum 
becomes a balance of linear momentum (or equation of 
motion) if external forces are present. The first of such path-
independent quantities for a crack was established in 1968 by 
Rice [5] and extended by Budiansky and Rice [6]. Eshelby's 
approach and most others are essentially based on the for
mulation of the type represented by equation (3), e.g., they 
use the displacement vector as a basic field quantity. We are 
now confronted with a very peculiar and unusual (from the 
field-theroretical point of view) situation. Namely, con
servation laws, in general, are related to the transformation 
on either dependent or independent variables as mentioned 
before. The equations of continuum mechanics, however, 
represent balance of linear and angular momentum, which in 
turn follow from transformations of physical coordinates. 
But the physical coordinates do not directly enter the for
mulation either as dependent or as independent variables. 

To take full advantage of the Lagrangian field-theoretical 
formalism, we have to adopt x as the dependent variable 
(instead of u) in (3), or alternatively (if we want to achieve 
formal resemblance to field theory) we might use a for
mulation based on form (2), where a would be playing the role 
of the field 4>. This has been done by Golebiewska Herrmann 
[7], In this approach two basic quantities were introduced in a 
natural fashion into the development, namely the physical 
momentum tensor, i.e., the Piola-Kirchhoff stress tensor and 
the material momentum tensor related to Eshelby's tensor. 
The latter was given as 

dL 
bik=~, Xjj-L8ik (4) 

"xi,k 

in the representation using a,t as independent variables. 
As it is seen, the Lagrangian density itself enters the ex

pression for the material momentum tensor bik. It is therefore 
of prime importance to be able to produce a suitable ex
pression for the Lagrangian. In this paper we construct 
material momenta for linear, dynamic, fully coupled ther-
moelasticity. Thus our first concern is the generation of an 
appropriate Lagrangian density. 

3 A Short Review of Variational Formulation in 
Thermoelasticity 

The equations of linear thermoelasticity are 

- f f i y , j (a ,O- / i (a ,O+p(a)Mi(a , r ) = 0 (5a) 

-<7,-,(a,/) - r ( a , 0 + s(a,t) =0 (5*) 

where the u,'s are the components of the displacement vector, 
usually defined as, 

Ui(a,t) =Xj(a,t) -a-, 

where p(a) is the density of the medium, / , represents body 
forces, <jy is the Cauchy stress tensor, and r and qt are the heat 
source and the heat flux, respectively. Finally, s denotes the 

entropy of the system. The aforementioned quantities satisfy 
certain relations, namely 

cry (a ,0 =c„*p(a) ukj>(&,t) - (%(a)T(a ,0 

qi(a,t)=\u(a)rJ(a,t) (6) 

s(a,f) =(3(a) r ( a , 0 +/3„-(a) u,v(a,f) 

where we introduced the temperature increment r(a,t) and 
where cijkp, /3y, Xy, /3 are the elastic and thermoelastic 
coefficients. In most cases these coefficients are constant. 

A characteristic feature of these equations resides in the 
coupling of the equations of motion (5a) with a differentiated 
form of the second law of thermodynamics (5b). The latter 
equation induces dissipation and the whole system becomes 
nonconservative. 

The basic purpose of a variational formulation of the 
problem will always be the generation of the complete set of 
equations of Euler's equations associated with a given 
Lagrangian density. The dissipative character of the ther
moelastic system is of essential importance and precludes the 
possibility of constructing the Lagrangian density by simple 
modification of its elastic analog (e.g., by adding additional 
terms). 

To the authors' knowledge two methods have been 
suggested to overcome this difficulty. The first one is based on 
the introduction of adjoint fields that render the system 
conservative. As such, it applies to any type of dissipative 
system. Implementations can be found in Morse and Fesh-
back [8] for the heat equation and in Herrmann and Tasi [9] 
for thermoelasticity. It is essential to note that this method 
generates a set of equations for the adjoint fields as well. In 
the case of the heat equation, the adjoint field is a solution of 
the backward heat equation. As such, it blows up ex
ponentially fast after a finite time for any kind of nonzero 
initial data. Of course, this last feature is irrelevant as long as 
one's goal is simply to generate the heat equation from a 
Lagrangian, but it forsakes any hope to obtain a meaningful 
material momentum, since such a momentum always involves 
£, thereby coupling field and adjoint fields. 

The second method has been specifically designed for 
thermoelasticity by Biot [10]. A field s, called the entropy 
displacement field, is defined through 

divs=-s (7) 

where s is the entropy of the system (as mentioned before). 

Recently Rafalski [11] has suggested a Lagrangian density 
based on convolution in time. This feature alleviates the 
obstacle created by the dissipation and avoids the trap of 
adjoint fields. Roughly speaking, the loss of energy of the 
system is compensated, through the convolution in time, by 
the gain of energy of that same system run backward. For
mally, this is done by introducing symmetrized products of 
two quantities at two different times, as shown in the next 
section. By contrast to the method of adjoint fields, the 
system is run backward only as long as it is meaningful. Note, 
however, that Rafalski's formulation still uses entropy 
displacements. 

The few papers mentioned in this section offer, in our 
opinion, a representative sample of the variational techniques 
currently used in thermoelasticity in order to derive the 
thermoelastic equations. In the next section we will construct 
a Lagrangian density where neither adjoint fields nor entropy 
displacements are considered. 

Before we proceed we should mention some contributions 
related to new conservation laws for thermoelasticity. Gurtin 
[12] derived a path-independent integral for the static case. 
Herrmann [13] found a generalization of Eshelby's tensor for 
thermoelasticity. However, great difficulties arise in handling 
the time dependence. The material momenta produced in [13] 
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are associated with the Laplace transform in time of the 
original equations, and their connection with the original 
material momenta has not been established. The author 
suggested that whenever the time operator occurred, the 
multiplication had to be carried out as a convolution. In the 
work mentioned in the foregoing, the entropy displacement s 
has been used. (The practicality of the notion of s is 
questionable since it involves the solving of equation (7) 
explicitly.) 

4 A New Lagrangian for Thermoelasticity 

To our knowledge, Gurtin [14] is the first to have con
sidered nonlocal Lagrangians in the case of elasticity. As it 
was previously mentioned, Rafalski then proceeded to apply 
this concept to thermoelasticity in [11]. In our formulation we 
keep this essential feature, but modify the fields previously 
introduced. 

I f /and g are two functions of time, we define 

lf.gV0=fU)g«0-t)+f«0-t)gV) 

if,g)r0 =f(t) g{tQ -t) -nt0 - o g(t) 

Let t0 be a strictly positive real number. If {x,J (/ = 1,2,3) 
and 7] are functions of a and /, we define £ (a,t,t0; 
X; ,Xj ,*,-, j , If, 1), V,/. V,/) t 0 b e 

- '/4 Cykp(a)lXk,p-8kp,Xi,j-5y]?0 + Vi Ay (a)[^,x,, y-

- 5,yL+o + '/4 P W I M I / O - 1/4 P(a)[JC„JC,-],+ 

where /,- and r are given functions of a and t and all coef
ficients entering (8) are assumed to be smooth, real, and 
symmetric and satisfy the usual hyptheses of strong ellipticity 
which guarantee that the equations of thermoelasticity are 
well posed (see equation (5)). The newly introduced field i) is 
related to the temperature T by the relation r = i\. 

The reader has undoubtedly noticed the nonlocality in time 
of £ (a,t,to>Xi,Xi,Xjj,ri,ri,rij,rij). Time t0 appears explicitly in 
£, not only in the limit of the integral. To underline this fact 
we will use from now on the notation £, instead of £. This 
time nonlocality will turn out to be essential for our purpose. 

As a first test of the adequacy of our Lagrangian density, 
we should be able to easily recover the classical Lagrangian 
density of linear elasticity. This is achieved by canceling all 
terms where r\ is present and by collapsing t with t0 — t. Then 
[Xi,xi\t becomes - 2 i , ( a , 0 Xj(a,t) since d/dt = — d/d{t0-
t) and £t0 becomes 

- '/* c.jkp (a)(**,p - &kp) (a ,0 (xu - 8U) (a ,0 

+ Vi p(a) x, (a ,0 Xi (a,t) + / , (a) *,- (a,t) (9) 

as announced. 
We now postulate the stationarity of A at the field point 

{XJ,T]). We perform the classical steps leading to Euler's 
equations, taking full account of the symmetry of the coef
ficients and of the convolution in time. We finally obtain the 
following set of equations for 0 < t < t0: 

3 
~~ * T ^CiJkp ^Xk'p ( a , / ) ~bkP\-&ij (a) ij(a,0 ] 

+ p ( a ) ^ ( a , O - / / ( a , O = 0 

-13(a) i} (a ,0- |3y(a) i , - , - (a ,0 

+ ^ - [X , y ( a , 0 Vj(a,t)]+r(a,t) = 0 (10) 

Equation (10) is exactly the equation governing the behavior 
of a thermoelastic body for t < tQ, as given by (5). 

Following the terminology of the calculus of variations, we 

conclude that £, is a Lagrangian for thermoelasticity (for / 
< t0). Note that in contrast with the method of adjoint fields, 
the Euler's equations of motion consist only of the ther
moelastic equations of motion: there are no additional 
equations. This remarkable feature is entirely due to the 
symmetry of the convolution in time since if E(t) represents 
the Euler-Lagrange expression at time t, and 8B(t) the 
variation of the appropriate fields at t, we have: 

\°IAU) 8B(t0-t)+A(tQ~t)8B(t)} dt 

= 2^\{t)bB{t0~t)dt (11) 

Another consequence of (11) is that even though t0 appears in 
a crucial way in (8), it does not enter in any way the equations 
(10), which was to be expected in as much as Euler's equations 
should be a statement about the time evolution of a given 
system, a statement that cannot possibly involve the future of 
this system. 

It is actually possible to produce a set of "natural" 
boundary and initial conditions from the variation of A. 
Demanding (M,-,T;) to vanish at t i m e / = 0 and A to be 
stationary over all elements of C^iB X [0,/0], |R4) that 
vanish at t = 0, we obtain as boundary and initial conditions: 

Boundary Conditions 

ff,7(a,/) n, = 0, (traction free boundary) 

<y,(a,0 n, = 0, (flux free boundary) (12) 

«, being the z'th component of the outwardly directed normal 
to dB, the boundary of the body. 

Initial Conditions 

X|(a,0) = ah (no initial displacement) 

x,(a,0) = 0, (no initial velocity) (13) 

7(a,0) = 0 

^(a.O) = 0, (no initial entropy) (14) 

Note that the first equation of (14) is satisfied by choosing 

i?(a,O = J0T(a,r)rfr' (15) 

which determines q completely. 
The system of equations (10), (13)-(15) is a well-posed, 

boundary-initial-value problem in xt and rj, provided that 
some regularity conditions are met by / , and r, the external 
"loadings" (refer to Dafermos [15] for example). Once more 
the convolution is essential to obtain a meaningful set of 
boundary and initial conditions. This has to be contrasted 
with the classical Lagrangian for elasticity given by (9) which 
does not give rise to a well-posed initial boundary-value 
problem. 

In the next section we generate material momenta from our 
Lagrangian density and we briefly examine the connection 
between these material momenta and the existence of path-
independent integrals in thermoelasticity. 

5 Conservation of the Material Momentum 

The conservation laws can be derived in various ways. A 
familiar one involving use of the Lagrangian for the system 
under consideration consists of allowing a larger class of 
variations (with varying boundaries) and to impose the in-
variance conditions on the corresponding action integral 
(refer e.g., to Logan [16]). The alternative simpler procedure 
was suggested for an elastic continuum by Golebiewska 
Herrmann [7]. It involves the Lagrangian density only and 
consists of differentiating it with respect to independent 
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variables. The terms are grouped in such a way that the use of 
the equations of motion can be made. We follow that ap
proach. In view of (8), this is a straightforward, though 
lengthy computation. After numerous integrations by parts, 
we obtain: 

•[{A),xKm]?0 + [(B),V,m]?0 
= 2 ^ 

da„, da„. 

- dj f k„,*,>],o - [qj,V,m]?0 }+d,{ p(a)[x,,VC;,„,],0 

(16) 

where (A) and (B) denote the left-hand sides of equations (5a) 
and (5b) and 

d£ 

refers to explicit differentiation of £, with respect to a,. 
We define Bmj (a,t,t0) and B,„ (a,t,t0) to be 

fl„y(a,Mo)= - ^[ciy,*/,„,],; + 1/a[(ify-,T)i„,],--£l06>, 

£,„ (a,/,/0) = + '/i p (a) [i, ,*,-„,],- - '/2[j,ijiffl],-

-1/^y(a)[ '),y , ' / ,„„],0 

Then taking (5a) and (56) into account, (16) reads as 

dB,„ 
da/ 

dB,„ 

dt 

3£^ 

da„, 

(17) 

(18) 

If we assume homogeneity of the body and space uniformity 
of the mechanical and thermal loadings, the explicit 
derivatives vanish and we are left with space-time, divergence-
free quantities composed of Bmj and Bm. Following the 
terminology of Golebiewska Herrmann [7], we will refer to 
(18) with vanishing right-hand side as to a material con
servation law. Introducing the symbolic notation (B = 
(B,„j,Bm), the latter can be written shortly as 

divd ffi = 0 (19) 

The relation (18), however, has an even more general 
meaning, since 

d£>o 

da„ 

will be different from zero in any part of the body where a 
defect or an inhomogeneity is present. In this respect (18) can 
be viewed as a balance of material momentum. 

An essential difference with the elastic case is evidenced in 
(17). The material momentum <B is nonlocal in time. This is a 
direct consequence of the dissipation and it has profound 
implications on the possibility of generating path-independent 
integrals. Such integrals are usually obtained by application 
of the divergence theorem to a material balance law. A direct 
inspection of (19) shows that if we consider a domain of the 
form Gx[0,t0], where G is a subdomain of B, a significant 
simplification occurs due to the symmetry property of the 
convolution. Defining ImJ (a,/0) to be 

P '0 f '0 

J0 Bmj (a,t,t0) dt=\)ol£,Q5jm -ou(a,/) xhm (a,t0 -1) 

+ Qj(a,t) t)\dt (20) 

we obtain from (19) 

\aGImj(*,ta)nJdo=-[\c (px<(a,t) Xi,„(a,t0-t) 

-s(a,t) r)t„, (a,t0-t) 

- Vi \ijV,j (a ,0 riJm (a,r0 - 1 ) d3aj 
I=I0 

(21) 

component of the outer normal to dG. We assume that this 
boundary is smooth enough for application of the divergence 
theorem. 

Making use of relation (15), equation (21) becomes 

ImJ(a,t0) njda= - pi , (n,t) xUm (a,/0 
v J G 

-t)d3 

•} 
' = '0 

1 = 0 

s(a,0)7)im (a,?0)rf3a (22) 

where dG denotes the boundary of G, and n} is the y'th 

This last equation is the closest we can get to path in
dependence: observe that the right-hand side depends only on 
t = 0 and t = t0; it is the material analog of an impulse-
momentum type relation. 

In contrast with the elastic case, there is no true path in
dependence even in a quasi-static case unless the initial en
tropy of the system happens to be equal to zero. 

But the most striking difference with the classical path-
independent integrals of fracture mechanics lies in the 
nonlocal character of all the quantities defined. It is only after 
specifying over which time length the system is observed that 
it becomes possible to devise for that time interval quantities 
suchas/„y(a,f0). 

In a later paper we will show that, in analogy with the 
elastic case, the quantity 

Imj(a,t0)njda 

where S is the surface around a crack in a given body, and B is 
related to the total energy change of the system due to an 
infinitesimal translation in the mth direction of this crack, 
over the interval [0,?0]. What this suggests is that it is not 
possible, as it is in elasticity, to determine the instantaneous 
force acting on the crack and to decide whether the crack will 
start propagating at a given instant in time, but that we should 
be able to determine if a crack will start propagating during 
any given time interval. 

6 Concluding Remarks 
The proposed Lagrangian differs from usual Lagrangians 

because of its nonlocality in time. In many physical theories 
there exists a strong relation between energy and time: in 
classical mechanics or field theory, invariance with respect to 
translation in time leads to conservation of energy; in 
quantum mechanics, Heisenberg's principle couples time and 
energy. Because the basic feature distinguishing a ther-
moelastic system for an elastic one lies in its dissipative 
character, it seems justified to adopt an expression where the 
time dependence differs from the one most often used in 
elasticity. 

Let us emphasize once more that only one set of equations 
is derived (from the variational principle) in contradistinction 
to the formulation using adjoint fields. 

In a following paper we will concentrate on quasi-static 
behavior and on the possible relation of material momentum 
to energy release rates. 
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6TH CONFERENCE UN FIBROUS COMPOSITES IN STRUCTURAL DESIGN 
ODD, FAA, NASA CONTACT: MRS. J . AVOUB 
AMMRC, ATTN: DRXNR-SM, WATERTOWN, MA 02 172 

FEBRUARY 23 - 25 , 1983 LOCATION: ISRAEL 
25TH ISRAEL ANNUAL CONF. ON AVIATION AND ASTRONAUTICS 

CONTACT: H. NIMROO 
DEPT. AERO. ENGNG., TECHNION-ISRAEL INST. TECH., HAIFA, 32000 

MARCH 14 - LB, 1983 LOCATION: PARIS, FRANCE 
3RD INT. SYMP. ON NUM. METHODS IN ENGINEERING 

CONTACT: R. P. SHAH 
CIVIL ENGINEERING, SUNY-BUFFALO, BUFFALO, NY 14214 

MARCH 17 - 18, 1983 LOCATION: PARIS, FRANCE 
1ST INT. COLL. QN VECTOR AN0 PARALLEL CQHP, IN SCIENTIFIC APP. 

CONTACT: ft. P. SHAW 
CIVIL ENGINEERING, SUNY-BUFFALO, BUFFALO, NY 14214 

MARCH 24, 1983 LOCATION.: LOUISVILLE, KENTUCKY 
SEMINAR ON DYNAMIC YOUNG'S MODULUS MEASUREMENTS 
ASTM CONTACT: A. W0LFENDEN 
H.E. DEPT., TEXAS AEH UNIVERSITY, COLLEGE STATION, TX 77843 

MARCH 23 - 24,1983 LOCATION: SOUTHAMPTON,ENG 
4-TH SEMINAR ON FINITE ELEMENT SYSTEMS 
COMPUTATIONAL MECH. CENTER CONTACTS C. BREBBIA 
125 HIGH ST.,SOUTHAMPTON,SO10AA,ENGLAND 

MARCH 23 - 25 , 1983 LOCATIONS PHILADELPHIA 
COMPOSITE STRUCTURES SPECIALIST'S MEETING 
AH HELICOPTER SOCIETY CONTACT: DON HQFFSTEDT 
BOEING VERTOL, P O BOX 16d58. HAIL STOP P30-22 . PHILA, PA 19142 

MARCH 2 3 - 3 0 , 1983 LOCATION: AACHEN, GERMANY 
FOCUSSING OF MECHANICAL WAVES IN CONTINUOUS MEDIA 
HOCHSCHULE AACHEN CONTACT: PROF. DR.-ING J dALLNAN 
RHEINISCH-HESTFALISCHE TECHNISCHE, 5100 AACHEN, GERMANY 

MAR. 21-25,1983/APR* 6 -7 ,1983 LOCATION: QUEENSLAND,ASTL/AUCKLAND 
6TH INT . CONFERENCE ON MIND ENGINEERING 
INT.ASSOC.WINO ENG. CONTACT: DR. J . E. CERHAK 
CQLQRAOQ STATE UNIVERSITY, FORT COLLINS, COLORAOQ 30523 

APRIL 11 - 1 3 , 1 9 8 3 
8-TH AEROACOUSTICS CONFERENCE 
AIAA 

LOCATION: ATLANTA,GA 

CONTACT: AIAA 

DATE : APRIL 19 -24 , 1983 LOCATION: CASERTA, ITALY 
TITLE: THE MECHANICAL PROPERTIES OF BIOLOGICAL SOLIDS 
SPONS: INSTITO 01 FISICA •A- RIGHI* CONTACT: PROF- G. PALLOTTI 

VIA IRNERIO 4 6 , 40126 BOLOGNA BO, ITALY 

OATE : APRIL 18 - 2 0 , 1983 
TITLE: INT CONF ON ADVANCES It 
SPONS: ASHE 

GENERAL ELECTRIC, BLDG 

LOCATION: ALBANY, NY 
I LIFE PREDICTION METHODS 

CONTACT: D.A. WOUDFORD 
K - l , RM 231MB,SCHENECTADY, NY 12301 

DATE : HAY, 1983 LOCATION: OSLO, NORWAY 
TITLE! CARDIOVASCULAR FLUID DYNAMICS AND ATHEROSCLEROSIS 
SPONS: UNIVERSITY OF OSLO CONTACT: PROF. L. NALLOE 

INSTITUTE OF INFORMATICS, PO BOX 1080, BLINDERN OSLO 3 , NURHAY 

OATE t HAY 2 - 4 , 1983 
TITLE: 24TH SDH CONFERENCE 
SPONS: AIAA/ASHE/ASCE/AHS 

UNITEO ENGR. CENTER, 

LOCATION: LAKE TAHOE, NV 

CONTACT: ASHE 
*7TH S T . , NEW YORK, NY 10017 

DATE : 
TITLE: 
SPONS: 

OATE ! 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

OATE i 
TITLE! 
SPONS: 

OATE : 
TITLE: 
SPONS: 

TORINO, ITALY MAY 9 - 1 4 , 1983 LOCATION: 
2ND EUROPEAN SYMP. FLYWHEEL ENERGY STORAGE 
POLITECNICO DI TORINO CONTACTS G. GENTA 
I 10100 TORINO, ITALY 

HAY 10 -14 , 1983 LOCATION: COLORADO SPRINGS 
INTERACTION OF NON-NUCLEAR MUNITIONS WITH STRUCTURES 
USAF CONTACT: C. A. ROSS 
P. 0 . BOX 1918, EGLIN AFB, FLOROIA 32542 

LOCATION: CLEVELAND, OHIO MAY 15 -20 , 1983 
SESA 1983 SPRING MEETING 
SESA CONTACT: SESA 
14 FAIRFIELD DRIVE, 8ROOKFIELD CENTER, CT 06805 

MAY 1 6 - 2 0 , 1983 LOCATION: MUNCHEN-NEUB18ERG.GER 
FLEXIBLE SHELLS, THEORY AND APPLICATION 
INSTITUT FUR HECHANIK CONTACT: DR. £- L. AXELRAD 
HOCHSCHULE DER BUNDESWEHR HUNCHEN, 8014 MUNCHEN-NEUUIBERG,GERMANY 

MAY 23-25 ,1983 LOCATION: W. LAFAYETTE,IN 
ASCE ENGINEERING MECHANICS SPECIALTY CONFERENCE 
SCHOOL Of CIVIL ENGINEERING CONTACT: Y . F . CHEN 
PURDUE UNIV. , W. LAFAYETTE, IN 47907 

LOCATIONS SASKATOON, SASKATCHEWAN DATE : MAY 30-JUNE 3 , 1983 
TITLE: CANCAN 83 
SPONS: UNIV. OF SASKATCHEWAN CONTACTS DR. M.U- HOSAIN 

CIVIL ENGR.,U.SASKATCHEWAN,SASKATOON,SASKATCHEWAN,CANADA S/NOWU 

OATE I JUNE 6 - 8 , 1983 LOCATIONS HAMPTON, VA USA 
TITLE: 2NO JAPAN - US CONFERENCE QN COMPOSITE MATERIALS 
SPONS: ASTM CONTACT: J.R VINSON 

UNIV. OF DELAWARE, HECH AND AEROSPACE ENGNG, NEWARK, DE 19711 

DATE : JUNE 19S3 LOCATION: UUINE,ITALY 
TITLE: INT. SYMP. ON CURRENT TRENDS AND RESULTS IN PLASTICITY 
SPONS: CISH-PLASTICITY TODAY CONTACT: G. BIANCHI 

PIAZZA GARIBALDI, 18, 33100 UOINE, ITALY 

DATE : JUNE 2 0 - 2 3 , 1983 LOCATIONS TRUNDHEIH, NORWAY 
TITLE: THE BOLTZHANN EQUATION IN GAS DYNAMICS 
SPONS: INST1TUTT FOR HEKAN1KK CONTACT: DR. T . YTREHUS 

NORGES TEKNISKE HOGSKOLE, 7034 TRQNDHEIH-NTH, NORWAY 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

OATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

JUNE 20 -24 , 1983 LOCATION: FREIBURG, W- GERMANY 
APPL. OF FRACT. MECH. TO MATERIALS £ STRUCTURES 
FRAUNHQFER-INST.WERK.STQFFMECH CONTACT: DR. E. SUMMER 
ROSASTRASSE 9 , D-7800 FREIBURG, WEST GERMANY 

JUNE 2 0 - 2 2 , 1983 LOCATION: HOUSTON, TEXAS 
JOINT MEETING, FLUIDS ENGRG., APP. MECH., BiOENGRG. DIVS. 
ASME CONTACT: ROBERT NEREM 
UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 

JUNE 2 0 - 2 4 , 1983 LOCATION: HOUSTON, TEXAS 
FLUIDS ENG CONF...HINI-SYHP ON ADVANCES IN GRID GENERATION 
ASME CONTACT: PROF. K. N. GH1A 
MAIL LOCATION 70, UNIV OF CINt CINCINNATI, OHIO 45221 

JUNE 20 -24 , L983 LOCATION: GRENOBLE, FRANCE 
FAILURE CRITERIA OF STRUCTURED MEDIA 
FR. NAT CENTER OF SCI RES CONTACT: PRUf- J . P. BOEHLER 
INSTITUT DE MECANIQUE, B.P. 53 X, 38041 GRENOBLE CEDEX, FRANCE 

JUNE 2 7 - 3 0 , 1983 LOCATION: MANCHESTER, UK 
MODAL ANAL OF STRUCTURES WITH APPLICATION TO MECH OF MATERIALS 
UNIV. OF MANCHESTER CONTACT: DR. G. R. TOMLINSON 
SIHQN ENGRG LAS, OXFORD RO, MANCHESTER ML3 9PL, UK 

JULY 12 -13 , 19S3 LOCATION: LONDON, ENGLAND 
ENVIRONMENTAL EFFECTS ON FIBRE REINFORCED PLASTICS 
IMPERIAL COLLEGE OF 5CI.&TECH CONTACT: F. L. MATTHEWS 
AERONAUTICS DEPT., IMPERIAL COLLEGE, LONDON SW7 2BY, ENGLAND 

JULY 13 - 15,1983 LOCATION: OANVERS, 
16-TH FLUID AND PLASMA DYNAMICS CONFERENCE 
AIAA CONTACT: AIAA 

HA 
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