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Cohservation Laws and Material
Momentum in Thermoelasticity

The main goal of this paper is to construct a Lagrangian function such that not only
the well-known equations of thermoelasticity, but also material conservation laws
can be derived. As action variables, the position x of a material particle and a scalar
Sunction n related to temperature are used. The material momentum for ther-
moelasticity is derived. Here, by contrast to the purely elastic case, the material
momentum depends on a time interval rather than on an instant of time. The
balance of material momentum is integrated over time to produce a relation

reminiscent of the impulse-momentum equation in classical mechanics.

1 Introduction

The development of mathematical fracture mechanics
focused attention on new material conservation laws because
they form a starting point for establishing path-independent
integrals. These conservation laws were first derived for a
static linear-elastic continuum. Numerous attempts have been
made to generalize them for nonlinear, plastic, viscoelastic,
and dynamic behavior.

It turns out that these new material conservation laws fit
naturally into a physical framework: they are related to the
(material) symmetries of the Lagrangian function of the given
system which in a static elastic case reduces to the strain
energy.

A natural obstacle prevents generalization to thermoelastic
systems. The dissipative character of these systems precludes
the generation of a Lagrangian for thermoelasticity by simple
addition of new terms, involving the fields (which describe the
thermal behavior) to the elastic Lagrangian. As long as we are
interested in deriving the thermoelastic equations only, it is
possible to overcome this obstacle by using adjoint fields as
well as original ones in the Lagrangian. Such a formulation,
however, is not capable of delivering the new conservation
laws because the crucial quantity appearing there involves the
Lagrangian itself.

The current paper is an attempt to construct a Lagrangian,
from which we can derive all known equations of ther-
moelasticity, as well as new conservation laws,

2 General Background

The variational approach to many physical theories proved
very useful over the years and will be followed here. For a
system of particles, for example, we consider an action in-
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tegral, where the integrand is called the Lagrangian of the
system under consideration and the independent variable is
the time 7. In various field theories, by contrast, we deal with
a Lagrangian density because the integration is performed not
only over an interval of time, but over a region of space V. In
other words, the actions A have the following forms

n
AZS, L{tiX;,Xy ... X,,V|,¥Vy...V,) df )
i
for systems of # particles, and
{
a=| | ewxsdedax @
‘o

for fields. Herex; (i = 1, 2, . . . n) denotes the position of the
ith particle, v; is its velocity, and all x,, v, are functions of ¢.
In (2) ¢ is a field (or fields), a function of both, and time ¢ and
space coordinates X, ¢, and ¢ ; denote partial derivatives with
respect to time and x;, respectively.

According to the stationarity principle, by varying the
dependent variables (x in the first case, ¢ in the second), we
derive the equations of motion for the particles or the field
equations. In many cases we are also interested in con-
servation laws for the given system. They can be derived from
Noether’s theorem {1] and are related to the invariance of the
action integral under infinitesimal transformations performed
on independent and/or dependent variables.

The Lagrangian description of the continuum can be
derived from (1) when the number # becomes very large and
particles are densely distributed. x,(f) then becomes a
continuous function of a material coordinate a (related to the
original number of a particle n) i.e., x = x(a,f). Most often a
displacement vector u = x — ais used for the description of a
continuum rather than the position x itself. Then relation (1)
transforms into

Iv
A=§ S L(a,f;uv, vu)dladt (3)
o J B

where the integration is performed over the whole body B.

. Here vand v u denote partial derivatives of u with respect to ¢

and a; (i = 1,2,3). The usually accepted equations of an
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elastic continuum are not, however, generally obtained from
stationariness of the action integral (3), but rather by ex-
tending well-known principles for the discrete systems of
particles to a continuum. In other words, the introduction of
the new independent variables a was not really exploited until
1951 when Eshelby introduced the notion of a force on an
elastic singularity [2], related to translations in a space. In the
absence of defects, the relation obtained by Eshelby becomes
a statement of conservation of field (or material) momentum.

New conservation laws, associated with the properties of
material space, have been derived by Gunther [3] and Knowles
and Sternberg [4]. These conservation laws are closely linked
to the path-independent integrals of defect (especially frac-
ture) mechanics. A similar situation arises in particle
mechanics where the conservation of linear momentum
becomes a balance of linear momentum (or equation of
motion) if external forces are present. The first of such path-
independent quantities for a crack was established in 1968 by
Rice [5] and extended by Budiansky and Rice [6]. Eshelby’s
approach and most others are essentially based on the for-
mulation of the type represented by equation (3), e.g., they
use the displacement vector as a basic field quantity. We are
now confronted with a very peculiar and unusual (from the
field-theroretical point of view) situation. Namely, con-
servation laws, in general, are related to the transformation
on either dependent or independent variables as mentioned
before. The equations of continuum mechanics, however,
represent balance of linear and angular momentum, which in
turn follow from transformations of physical coordinates.
But the physical coordinates do not directly enter the for-
mulation either as dependent or as independent variables.

To take full advantage of the Lagrangian field-theoretical
formalism, we have to adopt x as the dependent variable
(instead of u) in (3), or alternatively (if we want to achieve
formal resemblance to field theory) we might use a for-
mulation based on form (2), where a would be playing the role
of the field ¢. This has been done by Golebiewska Herrmann
[7]. In this approach two basic quantities were introduced in a
natural fashion into the development, namely the physical
momentum tensor, i.e., the Piola-Kirchhoff stress tensor and
the material momentum tensor related to Eshelby’s tensor.
The latter was given as

oL

0x; 4
in the representation using a,f as independent variables.

As it is seen, the Lagrangian density itself enters the ex-
pression for the material momentum tensor b;,. It is therefore
of prime importance to be able to produce a suitable ex-
pression for the Lagrangian. In this paper we construct
material momenta for linear, dynamic, fully coupled ther-
moelasticity. Thus our first concern is the generation of an
appropriate Lagrangian density.

b X;;— Loy “)

3 A Short Review of Variational Formulation in
Thermoelasticity

The equations of linear thermoelasticity are
- Ulj,j(ast) _fy' (ast) +p(a)u‘ (a,t):O
~q;;(a,t) —r(a,t) +s(a,f) =0

(5a)
(5b)

where the u;’s are the components of the displacement vector,
usually defined as,

U; (ayt) =X; (ayt) —a;

where p(a) is the density of the medium, f; represents body
forces, o;; is the Cauchy stress tensor, and r and g are the heat
source and the heat flux, respectively. Finally, s denotes the
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entropy of the system. The aforementioned quantities satisfy
certain relations, namely

a3 (8,0) =Cijpp () g, (R,0) — B (8)7(a,1)
Qi(a![)=)\ij(a) TJ(a’t) (6)
s(a,f) =p(a) 7(a,) + B;(a) u;;(a,r)

where we introduced the temperature increment 7(a,s) and
where c,, B;, A;, B are the elastic and thermoelastic
coefficients. In most cases these coefficients are constant.

A characteristic feature of these equations resides in the
coupling of the equations of motion (5¢) with a differentiated
form of the second law of thermodynamics (5b). The latter
equation induces dissipation and the whole system becomes
nonconservative.

The basic purpose of a variational formulation of the
problem will always be the generation of the complete set of
equations of Euler’s equations associated with a given
Lagrangian density. The dissipative character of the ther-
moelastic system is of essential importance and precludes the
possibility of constructing the Lagrangian density by simple
modification of its elastic analog (e.g., by adding additional
terms).

To the authors’ knowledge two methods have been
suggested to overcome this difficulty. The first one is based on
the introduction of adjoint fields that render the system
conservative. As such, it applies to any type of dissipative
system. Implementations can be found in Morse and Fesh-
back [8] for the heat equation and in Herrmann and Tasi [9]
for thermoelasticity. It is essential to note that this method
generates a set of equations for the adjoint fields as well. In
the case of the heat equation, the adjoint field is a solution of
the backward heat equation. As such, it blows up ex-
ponentially fast after a finite time for any kind of nonzero
initial data. Of course, this last feature is irrelevant as long as
one’s goal is simply to generate the heat equation from a
Lagrangian, but it forsakes any hope to obtain a meaningful
material momentum, since such a momentum always involves
£, thereby coupling field and adjoint fields.

The second method has been specifically designed for
thermoelasticity by Biot [10]. A field s, called the entropy
displacement field, is defined through

divs=—s 7

where s is the entropy of the system (as mentioned before).

Recently Rafalski [11] has suggested a Lagrangian density
based on convolution in time. This feature alleviates the
obstacle created by the dissipation and avoids the trap of
adjoint fields. Roughly speaking, the loss of energy of the
system is compensated, through the convolution in time, by
the gain of energy of that same system run backward. For-
mally, this is done by introducing symmetrized products of
two quantities at two different times, as shown in the next
section. By contrast to the method of adjoint fields, the
system is run backward only as long as it is meaningful. Note,
however, that Rafalski’s formulation still uses entropy
displacements.

The few papers mentioned in this section offer, in our
opinion, a representative sample of the variational techniques
currently used in thermoelasticity in order to derive the
thermoelastic equations. In the next section we will construct
a Lagrangian density where neither adjoint fields nor entropy
displacements are considered.

Before we proceed we should mention some contributions
related to new conservation laws for thermoelasticity. Gurtin
[12] derived a path-independent integral for the static case.
Herrmann [13] found a generalization of Eshelby’s tensor for
thermoelasticity. However, great difficulties arise in handling
the time dependence. The material momenta produced in {13]
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are associated with the Laplace transform in time of the
original equations, and their connection with the original
material momenta has not been established. The author
suggested that whenever the time operator occurred, the
multiplication had to be carried out as a convolution. In the
work mentioned in the foregoing, the entropy displacement s
has been used. (The practicality of the notion of s is
questionable since it involves the solving of equation (7)
explicitly.)

4 A New Lagrangian for Thermoelasticity

To our knowledge, Gurtin [14] is the first to have con-
sidered nonlocal Lagrangians in the case of elasticity. As it
was previously mentioned, Rafalski then proceeded to apply
this concept to thermoelasticity in [11]. In our formulation we
“keep this essential feature, but modify the fields previously
introduced.

If fand g are two functions of time, we define

Uigly =f(1) gty —1) +f (1o — 1) g(2)
Vgl =f(1) gty — 1) —f(to—1) (1)

Let ¢, be a strictly positive real number. If {x;} (/ = 1,2,3)
and » are functions of a and ¢, we define £ (a,tt;
Xi XX 5 M,0,,1,) L0 be

= Yo Cipp () X = BipoXi  — Bl i + V2 By (Dn,x; ;
— &yl + Y4 B(a)n, i — V4 p(@)[X;, %1,
+ Vi Ny (@), ;i + 2 Uixidi — Vo Irml (8)

where f; and r are given functions of a and ¢ and all coef-
ficients entering (8) are assumed to be smooth, real, and
symmetric and satisfy the usual hyptheses of strong ellipticity
which guarantee that the equations of thermoelasticity are
well posed (see equation (5)). The newly introduced field 9 is
related to the temperature 7 by the relation 7 = 1.

The reader has undoubtedly noticed the nonlocality in time
of £ (a,4,70;%;,%;,%; ;,mM,7,:,m,;) . Time ¢, appears explicitly in
£, not only in the limit of the integral. To underline this fact
we will use from now on the notation £, instead of £. This
time nonlocality will turn out to be essential for our purpose.

As a first test of the adequacy of our Lagrangian density,
we should be able to easily recover the classical Lagrangian
density of linear elasticity. This is achieved by canceling all
terms where 5 is present and by collapsing ¢ with ¢, — ¢. Then
[Jé,-,X,-],B becomes — 2xX; (a,t) x;(a,!) since 8/0t = —3/3(ty —
f)and £, becomes
= Y2 Cijp (A) 00 p — B ) (,8) (x5 — 6) (a,1)

+ Y2 p(a) x;(a,0) X;(a,1) +f;(a) x,(a,0) )
as announced.

We now postulate the stationarity of A at the field point
(x;,m). We perform the classical steps leading to Euler’s
equations, taking full account of the symmetry of the coef-

ficients and of the convolution in time. We finally obtain the
following set of equations for 0 < ¢ < #;:

d .
- 5_— {cijkp (a)[xk,p (a’t) _6kp] _Bij (a) 77(3,1) }
a;

+p(a) ¥ (a,0) —fi(a,t) =0
—B(a) j(a,r) —B;(a) X, ;(a,f)

+ i[X,»,-(a,t) n,;(a,0)] +r(a,n=0 (10)
aaj

Equation (10) is exactly the equation governing the behavior

of a thermoelastic body for ¢ < ¢y, as given by (5).
Following the terminology of the calculus of variations, we
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conclude that £,, is @ Lagrangian for thermoelasticity (for ¢
< ). Note that in contrast with the method of adjoint fields,
the Euler’s equations of motion consist only of the ther-
moelastic equations of motion: there are no additional
equations. This remarkable feature is entirely due to the
symmetry of the convolution in time since if E(f) represents
the Euler-Lagrange expression at time #, and 8B(¢) the
variation of the appropriate fields at #, we have:

SOO{A(t) 5Bty — 1) + Aty —1) 8B(1) ) dt

o
=2SOA(t)6B(t0-—t) dt an
Another consequence of (11) is that even though ¢, appears in
a crucial way in (8), it does not enter in any way the equations
(10), which was to be expected in as much as Euler’s equations
should be a statement about the time evolution of a given
system, a statement that cannot possibly involve the future of
this system.

It is actually possible to produce a set of ‘‘natural”’
boundary and initial conditions from the variation of A.
Demanding (u;,m) to vanish at time ¢+ = 0 and A to be
stationary over all elements of C*(B x [0,f,], R*) that
vanish at = 0, we obtain as boundary and initial conditions:

Boundary Conditions

o;(a,t) n; = 0, (traction free boundary)

qi(a,t) n; =0, (flux free boundary) (12)

n; being the ith component of the outwardly directed normal
to 0B, the boundary of the body.

Initial Conditions

X;(a,0) = @;, (noinitial displacement)
X;(a,0) = 0, (noinitial velocity) (13)
n{a,0) =0
$(a,0) = 0, (no initial entropy) (14)
Note that the first equation of (14) is satisfied by choosing
n(a,t)=S; 7(a,t’)dt’ (15)

which determines 5 completely.

The system of equations (10), (13)-(15) is a well-posed,
boundary-initial-value problem in x; and #, provided that
some regularity conditions are met by f; and r, the external
“‘loadings’’ (refer to Dafermos [15] for example). Once more
the convolution is essential to obtain a meaningful set of
boundary and initial conditions. This has to be contrasted
with the classical Lagrangian for elasticity given by (9) which
does not give rise to a well-posed initial boundary-value
problem.

In the next section we generate material momenta from our
Lagrangian density and we briefly examine the connection
between these material momenta and the existence of path-
independent integrals in thermoelasticity.

5 Conservation of the Material Momentum

The conservation laws can be derived in various ways. A
familiar one involving use of the Lagrangian for the system
under consideration consists of allowing a larger class of
variations (with varying boundaries) and to impose the in-
variance conditions on the corresponding action integral
(refer e.g., to Logan [16]). The alternative simpler procedure-
was suggested for an elastic continuum by Golebiewska

- Herrmann [7]. It involves the Lagrangian density only and

consists of differentiating it with respect to independent
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variables. The terms are grouped in such a way that the use of
the equations of motion can be made. We follow that ap-
proach. In view of (8), this is a straightforward, though
lengthy computation. After numerous integrations by parts,
we obtain:

as,, L
=2 T —[(A . + N
dam 6a,,, exp [( ) ’x"’"]’o + [(B) ’77,111]/0

- aj{ [oij,xi,m];(; - [Qj 7"),111]/5 b+ ar to (a)[xisxi,m]/?)

- [S,th]:?, - >\ij (a)[n,j’“’),.im]tz) } (16)
where (4) and (B) denote the left-hand sides of equations (5a)
and (5b) and

0L

a” " e

refers to explicit differentiation of £, with respect to a;.
We define B,,; (a,4,f5) and B, (a,t,{5) to be

ij (a9t’t0) == l/Z[oij ’xi.m]/B + %-[qjm,m]/B - £10 ‘Sjm
B, (a,5,ty))=+ I/Z,D(a)[xi’xi.m]ta - 1/2[5’77,'71]16

— YN (a)[ﬂ,j,n,im]@ (7
Then taking (5¢) and (5b) into account, (16) reads as
%+%=—a£’° (18)
da; ot da,, lewp

If we assume homogeneity of the body and space uniformity
of the mechanical and thermal loadings, the explicit
derivatives vanish and we are left with space-time, divergence-
free quantities composed of B, and B,. Following the
terminology of Golebiewska Herrmann [7], we will refer to
(18) with vanishing right-hand side as to a material con-
servation law. Introducing the symbolic notation & =
(B,j»B,,), the latter can be written shortly as

div, ®=0 (19)

The relation (18), however, has an even more general
meaning, since
L

‘0
aam exp

will be different from zero in any part of the body where a
defect or an inhomogeneity is present. In this respect (18) can
be viewed as a balance of material momentum.

An essential difference with the elastic case is evidenced in
(17). The material momentum ® is nonlocal in time. This is a
direct consequence of the dissipation and it has profound
implications on the possibility of generating path-independent
integrals. Such integrals are usually obtained by application
of the divergence theorem to a material balance law. A direct
inspection of (19) shows that if we consider a domain of the
form Gx[0,¢,], where G is a subdomain of B, a significant
simplification occurs due to the symmetry property of the
convolution. Defining 7,,; (a,#,) to be

iy ‘o
SO ij (a,l‘,to) dt: SO l °G10 6}/71 - 0/’j (aat) xi,ln (arto “t)

+CIj(aJ) ﬂ,m(a’fo_t) } dt (20)
we obtain from (19)
SBG Imj(a,to) ﬂdez b {SG (Pxi (a,t) Xim (a,fo -1
—S(ﬁ,l‘) Nm (a,fo —1t)
=1y
%) )\ijn)j (avt) N.im (a,fo _t) dJ(l} 1=0 (21)

where dG denotes the boundary of G, and n; is the jth
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component of the outer normal to 8G. We assume that this
boundary is smooth enough for application of the divergence
theorem.

Making use of relation (15), equation (21) becomes

SBG [mj (aat()) n,«a’o: - {SG pxi (a,t) xi,m (a,lo

=1

—t)vd3a]

| s@on,auwea 22)
This last equation is the closest we can get to path in-
dependence: observe that the right-hand side depends only on
t = 0 and ¢ = ¢;; it is the material analog of an impulse-
momentum type relation.

In contrast with the elastic case, there is no true path in-
dependence even in a quasi-static case unless the initial en-
tropy of the system happens to be equal to zero.

But the most striking difference with the classical path-
independent integrals of fracture mechanics lies in the
nonlocal character of all the quantities defined. It is only after
specifying over which time length the system is observed that
it becomes possible to devise for that time interval quantities
such as 7,,; (a,f;).

In a later paper we will show that, in analogy with the
elastic case, the quantity

SS I,"j (a,to) njdo

where S is the surface around a crack in a given body, and B is
related to the total energy change of the system due to an
infinitesimal translation in the mth direction of this crack,
over the interval [0,£,]. What this suggests is that it is not
possible, as it is in elasticity, to determine the instantaneous
force acting on the crack and to decide whether the crack will
start propagating at a given instant in time, but that we should
be able to determine if a crack will start propagating during
any given time interval.

6 Concluding Remarks

The proposed Lagrangian differs from usual Lagrangians
because of its nonlocality in time. In many physical theories
there exists a strong relation between energy and time: in
classical mechanics or field theory, invariance with respect to
translation in time leads to conservation of energy; in
quantum mechanics, Heisenberg’s principle couples time and
energy. Because the basic feature distinguishing a ther-
moelastic system for an elastic one lies in its dissipative
character, it seems justified to adopt an expression where the
time dependence differs from the one most often used in
elasticity.

Let us emphasize once more that only one set of equations
is derived (from the variational principle) in contradistinction
to the formulation using adjoint fields.

In a following paper we will concentrate on quasi-static
behavior and on the possible relation of material momentum
to energy release rates.
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