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CORRECTORS FOR THE HOMOGENIZATION
- OF THE WAVE AND HEAT EQUATIONS

By S. BRAHIM-OTSMANE, G. A, FRANCFORT and F. MURAT

ABSTRACT. — This paper is mainly devoted to the study of the corrector for the homogemzat:on of the
wave equauon

0 optud-div(Atgrad ) =0 in ®x(0, T),
w=0 on 82x(0,T),
#(0)=d", w(0)=F in Q.

A by now standard argument permits to pass to the limit in this equation and to obtain the homogenized
equation satisfed by the limit # of »*. Note however that the energy E* corresponding to %, defined by

1 ) 1 '
=5f [p°| [+ AF grad o grad w](x, t)dx=§J. [p°] 55 + A® grad ¢® grad & (x) dx
n . I+

does not in general converge to the energy corresponding to u.

- We thus partition «* into a sum of two terms w*=#+2*. The first term # solves the same wave equation '

with initial conditions 4* and 5 designed in a manner such that the energy Fi° corresponding to #° converges
to E%, A corrector result for # can thus be proved, namely,

—u,—0 strongly in C*(f0, T]; L2 (Q)),
grad #—P* grad u— 0 swrongly in Co (0, T (L* @)Y).

As far as ¢ is concerned, we prove that »* tends to zero weakly-* in L®(0, T; HZ (@) "W ® (0, T; L2 ().

This convergence is strong if and only if &*—&* and #—5, tend strongly to zero in H(Q) and in L2(Q)

' respectwely If such is not the case (1/2) p {v*|* (x, fdx and (1/2)J. (A® grad o° grad +*}(x, #) dx converge

fin the weak-# topology of L= (0, T)] to a posmve constant. Thus +°'is a perturbatfomwﬁmh permeates all
times.

The correcter problem for the heat equation is also investigated in this paper, in which case +* is proved to
be an 1mtla.l-bou.ndary layer conccntrated about the time ¢=0. ~

RESUME. — Dans cet article, nous étudiofis principalement le probléme des correcteurs pour I'homogénéisa-
tion de I'équation des ondes : :
prup—div(Afgradi}=0 dans Qx (0, T),
=0 sur dQx 0, T),
w(0)=a, £(0)=5 dans Q.
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198 S. BRAHIM-OTSMANE ef al.

Ii est facile (et maintenant classique) de passer & la limite dans cette équation et d’obtenir Iéguation
homogénéisée satisfaite par la limite » des «*. Mais I’énergie E* correspondant 4 #f, définie par

1 1
=§f [p?| s |2+ A® grad o* grad ] (x, th:EJ [p°| ¥ |2+ A® grad o° grad o] (x) dx
a G

ne c"oﬁverge pas, en général, vers I'énergie E° correspondant 4 u.

Pour cette raison, nous décomposons ¢ en une somme de deux termes 4*=:F~+1%, oii # est une solution de
Ia méme équation des ondes, mais avec des conditions initiales & et 5, que nous choisissons de maniére 4 ce
que Ténergie B* correspondant a # comverge vers E°, Nous démontrons alors un résultat de correcteur
pour gt

#—14,—0 dans C°([0, T]; L2(Q)) fort,
grad £ —P* grad u >0  dans C, ([0, TL; (L1 ()™ fort.

En ce qui concerne +f, mous démontrons qu'il converge faible-étoile vers zéro dans

L= (0, T; H{@)NW" = (0, T; L% (Q)). Cette convergence n'est forte que si of— ot er b*—F* tendent fortement _

vers zéro dans H}(Q) et dans L2 (Q) respectivcment." Si tel m'est pas le cas, (1[2)jp‘|v‘ Px, Hdx et
. R E

(1/2) J (A" grad +* grad +°) (x, {)dx convergent (dans L™= (0, T) faii)le-étoﬂe) vers une constante non nulle, ce
a .

qui montre que 7* est une perturbation qui perdure pour tout temps £>0.

Nous étudions également dans cet article le probléme des correcteurs pour I'équation de la chaleur. Dans ce
cas t* est une couche limite concentrée autour du temps 1=0.

1. Introduction

This paper is devoted to the study of correctors for the homogenization of the wave
and heat equations. The following problems are investigated for an arbltrary bounded
domain Q of RY and an arbltrary positive time T:

2,5 o
p° 56;‘ —»div’(A‘ grad #)=f-in Qx(0, T),
an #=0 on 6Q.>< ©, T),
w(0)=a inQ,
a_”g(()):b*’- in Q,
ot
o . :
| pro, mdiv grad v)=g in Qx (O, T),
(1.2) :

¥*=0 on 8Qx(0, T),
T{0)=¢ in Q,

The unknown functions are #* and «*. The coefficients pt, A% B% K® are assumed to be
independent of ¢, uniformly bounded in L, (), and uniformly bounded away from zero
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(or uniformly coercive). The initial conditions &, #°, ¢* are taken to be bounded in
H(Q), L, (Q) and L, (Q) respectively.

The homogenization of (1.1), or (1.2) can be labeled as classical (see e.g. [BeLP],
[Sa]) although a careful study of the associated correctors has not yet been performed,
at least as far as the wave equation is concerned. A corrector result is available in the
case of the heat equation (see [BeLP]). . , _

The main issue and the most profound difference with the elliptic case is immediately
perceived through the following simple considerations, :

Assume that f=0, a°=4® and #*=0in (1.1). The solution «* of (1.1) satisfies the
principle of conservation of energy, namely,

. =\ 2
(1.3 1 j [p“' (@-) + A* grad «° grad u“:, (x, z)dx=1 A*® grad a® grad 4° dx.
2ol \ar) 2)q

The weak limit u of u®, which is the solution of the homogenized equation associated
to (1.1), i.e. (¢f. Section 3), '

—Pu o, .
pE——dlv(A grad u}=0 in Qx(0, T),
| u=0 on dQx(0, T,

@4 u(0)=a° in Q,

% 0=0 in
o
also satisfies the principle of conservation of energy,

. .
"~ (1.5) 1 f ﬁ(?f) + A° grad u grad u] (x, t)‘c:ix=l A° grad a° grad o° dx.
2Jol " Nar) T ETE T 2)g ,

Since in general

(1.6) Hm ~1~J. A® grad a° grad a° dx>% f A° grad a° grad «° dx
. : £~ 0 Q 0

the convergence of the energy does not occur. But such a convergence {5 A¥the root of
construction of correctors. We thus partition #* into two parts #* and .

The first part #* will solve the wave equation (1.1) with &® and #* replaced by~a®
and b*, which are themselves designed to achieve the convergénce of the energy. 1In the
case of interest to us here, 5 is null and &* is chosen such that

a—a® weakly in Hi(Q),

A° grad a°® grad «°dx.

1.7 - ~
.7 lf Aagrada’grada‘dxalf
2)a 2

Q
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A corrector result is obtained for #* (¢f. Theorem 4. 1) in the spirit of the elhptlc case,
namely it is proved that
0 Ou
————=0 strongly in €°([0, T]; L, {Q)),
(1.8) ) > gly ([0, TJ; L, ()
grad #*—P® grad u —» 0 strongly in %°([0, T; [L, (1™,

where P® is a matrix which only depends on the sequence A"'r(cf Definition 2. 2).

The part +° is easily proved to converge to zero in the appropriate weak topologies,
namely . -
A ‘
6 £
% .0 weak-%in L =0, T; L, (52,
(1.9) at

grad v*—~0 weak-x in L_ (0, T; [L, (Q)").

The convergences are proved to be strong if and only if

(1.10) a—a -0 strongly in H} (),
) b— B0 strongly in L,(Q).
Such a condition cannot be satisfied in the above considered example unless A® happens
to strongly converge to A°.
The term ¢ acts as a perturbation originating in the incompatible character of the
initial conditions &%, &* with the oscillating structure of the matrix A% If (1.10) is not
satisfied this perturbation is found to permeate all times; indeed it is proved (¢f. Theorem

4.3} that the kinetic and potential energy terms, namely (1 /Z)I [pe (00 /00))*1 (x, fydx
Q2

and (1/2) | [A® grad + grad ¥](x, f) dx, admit the same constant limit as & tends to zero.
Convergences (1.8) and (1.9) provide a description of the behaviour of #f=#+1* (¢f.
Theorem 4.4).

A similar approach is used to study the heat equation (1.2). The solution *° is
partitioned into two parts T° and 6°. Although most of the obtained results can be
found in [BeLP] our analysis delivers a detailed picture of 6° which behaves as an
authentic initial-boundary layer concentrated about the time =0 in the adequate strong
topologies (¢f. Theorem 7.2). o

This paper is to be related to our paper on thermoelasticity [BrFMu] (see also [F]) in
which a coupling between (1.1) and (1.2) is introduced through the first equations of
both (1.1) and (1.2). The results obtained there are less satisfactory because of our
failure to provide a detailed analysis of the corresponding +* and 6°. . Let us emphasize
however the qualifative jump in the degree of intricacy involved in deahng with the
system of linear thermoelasticity.
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CORRECTORS FOR THE HOMOGENIZATION... 201

The present paper is organized as follows. Section 2 recalls known corrector results
in the elliptic.case. Section 3 is devoted to the study of existence and to the homogeniza-
~ tion of the wave equation. Section 4 states the corrector result for (1.1) while Section 5
addresses the proofs of the result anounced in Section 4. Section 6 is concerned with
- the homogenization of the heat equation while Section 7 deals with the correspondmg y
corrector result.
The original parts of this paper will be found in Sections 4, 5 and 7. Corrector results
for the solutions «*, = of (1.1), (1.2) are stated in Theorems 4.4 and 7.3.

2. A review of homogenization and correcfor results in the elliptic case

This section briefly recalls basic results pertaining to the homogenization of a scalar
second order elliptic equation in divergence form. The results presented here are at the
root of the subsequent stpdy. In partzcular the dotion of corrector matrix firstly
introduced by L. Tartar [T1] plays an essential role i in our analysis.

Throughout the paper Q denotes a bounded open domain of RY with boundary 8Q, T
is a strictly positive real number, € belongs to a sequence of strictly positive real numbers
that converge to zero, o, B are two real numbers satisfying 0 << $ and

2.1) Ao B N={AXeL (@ RYxRMAXEEza L]
~and AT (x)EE2 BT |EJ? for almost every x of Q and every & of RN},

Remark 2.1. — Any element A of . (a, B; Q) éatisfies
Ax)EE2
|AE|<PE|,

with p'= for almost any x of Q and every £ of RN Conversely a matrix A (x) satisfying
(2.2) belongs to .# (o, &/(B)% Q). @ ‘

DEFINITION 2.1. — A4 sequence A® of # (o, B; Q) is said to H-converge to a matrix A°
of M (o, B; Q) if and only if for any fin H™ ' (Q) the sequence v* of solutions of

—div(A® grad )=/, in Q,

2.2)

2.3

( : ) =0 on 89, -
. [ L

satisfies : _ ’ N

@.4) 7" —o? weakly in Hj(Q),

A® grad v —\A° grad v°  weakly in [L, Q)

where v° is the solution of
—div(A® grad v")=f, in Q,

2.5
2.9) =0 on Q.

This convergence will be denoted by Aallae o
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202 S. BRAHIM-OTSMANE ef al.

The above definition was introduced by S. Spagnole [Sp] (under the name of G-
convergence) in the case of symmetric matrices and by L. Tartar [T1] and F. Murat
[Mul] in the non symmetric case. An extensive litterature on the topic is now available;
see e.g. the books of A. Bensoussan, J.-L. Lions, G. Papanicolaou [BeLP] and E.
Sanchez-Palencia [Sa] which concern themselves with the important case of periodic
coefficients, i e., of matrices A® of the form A°(x)=A (x/s) where A(y) is a periodic
matrix defined on RY; see also the survey paper of V. V. Zhikov, S. M. Kozlov, O.A.
Oleinik, K. T. Ngoan [ZKON]. The motivation for such a definition lies in the following
compactness result due to S. Spagnolo [Sp] and L. Tartar [T1]:

THEOREM;, 2o 15— Any gwen sequence of M (o, B; Q) admzts a subsequence which H-
converges rﬁ“an element of #(, P;Q) @

In fact the notion of H-convergence does not hinge on any specific type of boundary
conditions. Its local character is demonstrated i in the followmg :

THEOREM 2.2. — Let A® be a H-converging sequence of elemems of /4 (m B; Q) which -

H-converges to A°. If z* and f* are such that .
=z weakly m_.H}M (Q), N
(2.6) _ fE=f strongly in H 1 (Q),
—div(A® grad f)=f* in 0,
then
2.7 Af grad z#— A% grad z  weakly in [L‘zc"‘.(ﬁ)j”. ®

We now recall L. Tartar’s corrector result which describes the structure of the sequence
grad z° in Theorem 2.2 (¢f. e. g. {T1], [Mul], [BeLP], [Sa], [ZKON]). To this effect, N
functions w;(1<i{<N) such that S

grad wﬁmei. weakly in [L,(Q)I%,,

2.8) el _ :
—div(A® grad wi)= —div(A%e) in Q,

are introduced. In (2.8) ei(1§i§ N) denotes a basis of RN, The existence of such
functions is easily obtained through the solving of a Dirichlet problem on a domain that
compactly contains £2.

DEF[NITION 2.2, — The sequence P* of elements of L, (€; RN x RY) defined by
(2.9 ‘ Pfe;=grad wi in Q, 1§i§N,
is called a sequence of corre'?ctor matrices associated to A*. @

Ifemark 2.2. — If P® and Q® are two such sequences, it can be proved that

| (2.10) P*—Q*—0 strongly in [L¥* QY. @

~TOME 71 — 1992 — N° 3




CORRECTORS FOR THE HOMOGENIZATION... 203

Remark 2.3, — In view of Theorem 2.2

P*—I weakly in [L,(Q¥,

2.11
2.1D AP~ A weakly in [L,( QY. @

With the help of the corrector matrices we are in the position to futher describe the
structure of the gradients of local solutions. :

TueoreM 2.3, — Let A® be a H-comverging sequence of elements of M (a, B; €.
Denote by A° its H-limit and by P¢ an associated sequence of corrector matrices. Then,
if 2° and f* satisfv (2.6),

grad z2=P°® grad z+ ¢,

2.12)
=0 strongly in [LY°(QF.

If z belongs 1o WP (Q), 2€p<+ oo, and P is bounded in [L, QP 2Zg< +w, then

(2.13) C T PS0 stongly in [LLL (@
with
(2.14 1=m=1x (l, £+1)

s 2'p g

Finally, if z° and z are elements of H* (Q)‘ana’ satisfy (2.6) together with

(2.15 j A® grad 7* grad z°dx —>-[ A° grad z grad z dx,
e Q

the convergences (2.12), (2. 13) take place in [L; (Q)IY and [L,(Q)" respectively. ®
The proofs of the various results presented above will not be reproduced here. They
are based on the proper use of the test functions ¢ wi where @ is"an element of €7 (QO)
. together with repeated use of the “div-curl lemma®, the prototype of the theory of
cotnpensated compactness (see [T1], [T2], [Mu2], [Mu3]). The “div-curl lemma® is now
stated in a time dependent form which will be of use later on.

‘THEOREM 2.4. ~ Let £ and g* be two sequences of [L,(Qx (0, THN that satzsfy
* ‘\— “Q—.

E—& weakly in [L, (€% (0, T))]N

(2.16)
g—g weakly in [L,(@x (0, T,
while '
divg® lies in a compact subset of H} (Q % (0, T)), _
2.17) curl g° lies in a compact subset of [H 2 (Q % (0, T,

%— or aai; lies in a compact subset of [H; ! (Q x (0, THF,
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204 ‘ S. BRAHIM-OTSMANE ef al.

then

Egttg in @Q%(0,T). @

3. Homogenization of the wave eqnation

This section is devoted to the study of the homogenization of the wave equation.  After
a brief review of a few results pertaining to existence and uniqueness and a careful
examination+of the sense in which the initial conditions are satisfied the homogenization
result is stafed and proved through a reduction of the problem to the elliptic setting.

The following wave equation with Dirichlet boundary conditions is investigatéd:

. AZLE ’ .
3.1 - p”aaTl;—div(AE grad #¥)=f in @x (0, T),
(3.2) T #=0 on aQx(0;T),
(3.3) w(O)=a° in Q,
(3.4) iﬁ(m=ba in Q.
H

In (3.1)-(3.4) the scalar valued function «* is the unknown, whereas the other quantities
are given data of the problem. They are assumed to satisfy the following hypotheses:

pPPel,, (),
(3.5) pP—p weak-x in L_ (Q),
A Sp*(¥)<X,,  almost everywhere in Q,
where X,, A, are two strictly positive real numbers (A, <},), '

'Ate.d (a, B; Q)

(3.6) A= A0
A= AS
3.7 : SeLl,(0, T; L, (),
6.9 aeHy (@),
a—a® weakly in H}(Q),
Bel,@),

b—b weakly in L,(Q),
pth*—pb weakly in L, (Q),
b*=pb/p.

(3.9)

TOME 71 — 1992 — n° 3
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CORRECTORS FOR THE HOMOGENIZATION... 205

Remark 3.1. — Since A® is symmetric, its H-limit A° is also symmetric. @

The problem (3.1)~(3.4) is well known (c¢f. ¢.g. [LMa] Ch. I1.8) to yield a unique
solution. Specifically, the following theorem holds true: _ .

TaeoreM 3.1. — Under hypotheses (3.5)-(3.9), there exists a solution of (3.1)-(3.4)
satisfying

et ([0, T); H3 (€Y),

(3.10) %‘-fe%" @, T); L, @)

Furthermore unigueness holds in the larger class

€Ly, (0, T; Hy (Q)),

3.11 Bu" _
G- L e, 0, T L),
ot _
Finally setting
2
e (t)=%J |:plz (%u—a) + A® grad o grad u‘:| (x, §)dx,

(.12) aL \GL

*’=éj [p® (%Y + A® grad &® grad o°](x) dx,

4]
one has
(3.13) ee(t)=Ea+fffaidxds in[0,T. ®
oda Ot -

Remark 3.2. — If fis identically zero, (3.13) is precisely the statement that the energy
is conserved. 'We. will refer loosely to (3. 13) as “the conservation of energy” even when

F£0. @ :

Remark 3.3. — The uniqueness result, which is stated for the “I in’ time” class
(3.11) of functions necessitates to further analyze the meaning of the initial conditions
(3.3). (3.4). To this effect a few definitions are to be recalled. ~

If X and Y are two Banach spaces with continuous embedding of X into Y,
%2 ([0, TL; X) is defined as the space of X-valued functions v defined on [0, T] such that
the real valued function (&, v(f) >x. x is continuous on [0, T] for any # in the dual space
X' of X. If X is a reflexive Banach Space then (see e. g. [LMa], lemmma 8.1, p. 297)

i

(3.14) L, (0, T; X)N¥° ([0, T]; Y) =7 ([0, T}; X).

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES.

il




i

206 S. BRAHIM-OTSMANE et al.
Define further the following subspace of €° ([0, T]; Y):

(3.15) W0, T; X,Y)={veLw(0, T; X) %ELZ(O, T; Y)}.

Consider now a solution «* of (3.1), (3.2) with the “L_, in time” regularity; #* belongs
to W (0, T; H3 (), L, (©2)), thus to €° ([0, T]; L, (X)) and (3.3) has a meaning. Further
p(0u/01) belongs to W (0, T; L, (Q), HT' (£2)), thus to €° ([0, T, H™*(Q)) and in view
of (3.14) to ¥2 ([0, TJ; L,(Q)). Consequently the function .

G.16) ., i fos f 32 e f (ﬁ) o
S Jo 01 a\p?/ ot

is continuous on [0, T] for any 4 in L, (Q), i.e.,

3.1 X e 10, T5 Lo ()

and the initial conditioh (3.4) has a meaning. This initial condition is exactly (and not
only formally) equivalent to the initial condition on p®(8u®/6¢), namely

(3.18) . (p“%)(0)=p‘b‘ inQ ®

The conservation of energy (3.13) together with (3.5)-(3.9) immediately imply that

# is bounded in L_(0, T; Hi(Q)),

(3.19) 2_1:: is bounded in L_ (0, T; L, (Q)).

Let us introduce the “homogenized” wave ‘equ_at'gofi

2 ) | :
a%—dw (A% grad w)=f in Qx(0, T),
u= 0 on 6.0 X (03 T)’

3-20) u(0)=a° in Q,

fu
—(0)=58° in Q.
at( ) in

The following homogenization result holds true:

THEOREM 3.2. — The solution u* of (3.1)-(3-4) converges to the solution u of (3.20) in
the following sense: ’
wW—u weak-* in L_ (0, T; H}(Q)),
(3.21) 0w du

~——>—  weak-* in L,(0, T; L,()). @
PR ( 2 ()
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The proof of Theorems 3.2 can be found in [BeLP], Chapt. 2, p. 301 or [Sa], Chapf. 5,
Theorem 6.3, p. 67. It is presented here for the sake of completeness.

Proof of Theorem 3.2. — The proof consists in reducing the preblem to an éiliptic
setting. Such a reduction can be performed through Laplace transformation or through
multiplication of the equation by a test function @ in €5 (0, T). Our preference goes
to the latter technique and we set, for any w in L, (0, T; L,{)),

- T . - T 62 [
(3.22) w(x)= j w(x, o ()dt, w(x)= j w(x, 0 ¥ () dt.
1] . [H]

By virtue of (3.19) we are at liberty to extract a subsequence & such that

7 W —u* weak-x in L (0, T; Hi(Q),
3.23 S
3.23) _ Qg_@a—;‘; weak- in L (0, T; L2(Q)).

Then

WF —u* weakly in Hi(Q),

(3.24) . . .
' —u* weakly in HL(Q).

Futher o, % satisfy, in view of (3. 1),

—div(A® grad #¥)=f—p*% in Q,

3.25 -
( ) =0 on Q.

The very definition of H-convergence (Definition 2.1, Theorem 2.2) implies that u*
and u* satisfy

(3.26) —div(A° grad #*)=f—pu* in Q.

Since ¢ is arbitrary, (3.26) yields in turn

(3.27 . - P a;t: —div(A° grad w*)=f in 2" (Qx (0, T)).
: - oy
‘Let us now investigate the initial conditions. By virtue of (3.23), °
(3.28) | # —u* strongly in 4°([0, TJ; L, (Q)), .
because ‘ o
.29 W (0, T; X, Y) is compactly embedded in €° ([0, TJ; Y)

if X is compactly embedded in Y,
(cf. e. g. [Si], Corollary 4, p. 85).
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208 S. BRAHIM-OTSMANE et al.

Thus the initial condition (3. 3) passes to the limit and we obtain
(3.30) . w*({0)=a° in Q.

In view of (3.23) and equation (3.1), p*(0uf/@7) is bounded in
WO, T; L), H ! (Q)); thus application of (3.29) yields

e _ou _—
(3.3 p* fé—tw—z' pmé—— strongly in €° ([0, T]; L™ {Q)),

which permits to pass to the limit in the initial condition

(3.32) ( o )(0) o° B
Hence ' ' ' '
(3.33y . - (p %‘—) (@ =pb.

Thus #*, which belongs to the “L, in time” class defined by (3.11) satisfies (3.27),
(3.30), (3.33). Remark 3.3 applies to #* and yields

(3.34) ai*(O) =5
p

The “L* in time” uniqueness result for the solution of the wave equation implies that
w*=u. Since the limit is uniquely defined the whole sequence #* converges to # and the
proof of Theorem 3.2 is complete. @ :

Remark 3.4. — In the context of Theorem 3.2, the following statements of uniform
convergence in time hold true, for any elements & and / of H™*(Q) and L, (Q) respectively:

@, K puf@n—tan— Cu(@), k >H5 @1 '@
strongly in %° ([0, TJ),

£ a_ue - a ?E T
Lp (x) Py (x, Hi (‘x) dx L p(x) at, (x, Hi(x) d){, w3
strongly in %° ([0, T]),

(3.35)

as € tends to zero.

In concrete terms the statements of convergence (3.35) demonstrate that the possible
time oscillations of the quantities #° and p®(du*/0¢) disappear upon spatial averaging. In
particular the first convergence in (3.35) should be compared to that obtained in
(3.21). Note however that the second convergence in (3.35) does not imply strong
convergence of the spatial average of du®/dt.
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The convergences in (3.35) are easily deduced from (3.28) and (3.31) respectively
upon approximating k and ! by elements of L, (Q) and H] (Q) respectively. In fact, the
same argument yields the “compactness” of the embedding (3. 14) whenever X is com-
pactly embeddedin Y, @

4. Statement of the corrector result for the wave equation

This section states and comments the corrector resuit for the wave equation (3. 1)-(3.4).
The solution u° is split into two terms #* and o*. The energy associated with # is
designed in a manner such that a corrector result can be obtained for #*. The term +*
converges weakly but not strongly to zero and its energy is lost by the homeogenization
process. The obtained resuits are summed up in Theorem 4.4, The proofs are given
in Section 3. . .

Note that a corrector ‘result pertaining to the wave equation is derived in [BeLP],
Chap. 2, Scction 3.6 under the implicit assumption that all initial conditions are null;
then the term 2* can be done away with. Such is not generally the case. This remark
seems to be new.

The energies ¢® and E° associated to the solution  of the homogenized wave equation
(3.20) are defined as

e (¢ =—J P Gu) +A° grad u grad u |(x, £)dx,
2Ja ot

“.1)
Eo=%f [p(6°)* + A° grad a° grad o] (x) dx.
0

Then, as in Theorem 3.1,
. 0rn_woy | du .
(4.2) e’ (H=B"+ Sf—dxds in [0, T].
. o Jo Ot
The boundedness of the initial conditions and of #* implies that & (¢) and E* [defined in

(3.12)] are bounded in L (0, T) and R respectively. For a subsequence & af g, on¢ has

¢ —e¢ weak-*x in L o (0, T),

4.3
@3 E*>E in R ) ~

Remark 4.1. — The subsequence ¢ may be proved to converge to e in the strong
topology of €° ([0, T)) [¢f. (4. 14), (4.26) below]. @

The main difficulty resides in the fact in general

(4.4) e(®#e°() and  E#E
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Theorem 4.3 below will detail the behaviour of ¢* and E°. This observation is at the
root of the introduction of a solution #* of the wave equation with initial conditions a°
and & defined by

—div(A® grad &)= —div(A® grada®) in Q,
a*=0 on aQ,
4.6 bB*=p°,

@.5)

Y

In (4.5)-(4.6), a° and b° are the functions defined in (3.8), (3.9). Define further #*

and +* as the}s?u_ti\ons_ of the following wave equations:
Y )
LA -

eazue '. € s :
P F—dlv(A grad ¥¥)=f in Qx(0, T),

=0 on dQx(0,T),
4.7 o

o w(0)=a" in Q,
Z—u€(0)=5‘=b° in Q,
t

0%t

ar*

p* div(A® grad +*)=0 in Qx(0, T),

»*=0 on 2Qx(0,T),

@.3 -
.8 *0)=a"—a* in Q,

2
2 O=pF=p-t in 0

Introduce the corresponding energies, i.e.,

- 1{ F\? - -
e (t)zi p* an +A* grad o grad o | (X, 1)dx,
4.9 ' 2 . ) "
EB=% j [p*(B%)* + A® grad 2 grad af](x)dx,
o _
] fr7\? A
- ne( -=5 pf m + A* grad #* grad ¢° |(x, ) dx,
4.10) 2
H==% J [p®(B°— b%)% + A® grad (a*— &) grad (a°—a")] (x) dx.
Q

They satisfy

t e
E“(t)=E“+J £ axds in 0, T,

n(H=H° in [0, T]. -

(4.11)
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Obviously

4.12) _ W=+ 15, .

The functions # and +* are successively investigated and the obtained results are
summed up in Theorem 4.4,

As far as # is concerned we obtain the

Tueorem 4.1. — The following convergences hold true:

(4.13) a&—a® weakly in H)(Q),
4.19) e —e® strongly in €°([0, T]),
4.15) : ' BuE® iR,

W weak~*.in L (0, T; Hj (2),
| E_\:‘a; weak-* in L“, (0‘, T; Lz (Q))i

where u is the solution of the homogenized wave equation (3.20) and a°, €°, E° are the
corresponding initial condition and energies [cf. (4. 1)].

Furthermore, the following corrector result holds true:

= _
@.17 o N strongly in €° ([0, T]; L, (Q)),
ar ot
@.18) grad #*=P* grad u+R",
’ R*—0  swongly in €°([0, T); [L, (),

" where P° is the corrector matrix associated to the sequence A®. If u belongs to
F°([0, T); WE?(Q)), 2=p=+ o0 and P* is bounded in [L, (Y, 2<¢< + o0, then the
convergence of R* in (4.18) takes place in €° ([0, T); [L, Q™) with

(4. 19) l= max (1, 1+1). ‘ i T \?‘*:;
K 2p q . _

Remark 4.2. — A result in the spirit of that of Theorem 4.1 is given in [BeLP],
Chapt. 2, Section 3.6 in a periodic setting when p® is identically equal to 1, A®*(x)= A (x/e)
with A periodically defined on .# (a, B; R™) and « is sufficiently smooth. - Most import-
- ant however is the implicit assumption made in Section 3.6 of [BeLP] that the initial
“conditions are equal to zero. For this reason the result obtained there is similar to
" Theorem 4.1 above and not to Theorem 4.4 below. @

JURNAL DE MATHEMATIQUES PURES ET APPLIQUEES.




212 - _ 8. BRAHIM-OTSMANE éf al.

Remark 4.3. — Assume that the data are smooth enough for all computations in this
remark to be legitimate. The time derivative du*/dt satisfies the wave equation

& (o . N
61‘2(6) le(A grad(at)) Py n Qx(0, T),

ok
—={0 on #2x(0,
Py ©, ),

ouF

(4-20) —~—(0) p° in Q,

e (p at(aw)) (0)=div (A* grad #(0)+/ (O),
© =div(A® grad M) +f(0) in Q.

Note that the initial condition on 8/8t(8uf/df) is given as an initial condition on
p°(8/0t (88/06)) in accordance with Remark 3.3. Because the initial conditions on

d1/0t, p*(d/0t (9iF/01)) are fixed Theorem 3.2 is applicable. It yields the weak conver-
gence of duf/0t to dufdt in W (0, T; Hi(Q), L,(Q)) and, with the help of (3.29), the
strong convergence of 8u°/dt in €° ([0, T]; L, (€)). This result is identical to (4.17).
Note finally that similar considerations would be doomed in the case of #* since
div (A® grad a®)+f (0) is, in general, only bounded in H™1(Q2). @
As far as ¢® is concerned we obtain the

THEOREM 4.2. — The following convergences hold true:

#—0 weak-* in L (0, T, H}(Q),
(4.21) &
‘ —540 weak-* in L (0, T; L, ().

The convergences in (4.21) are strong if and only if

E—F 0 strongly in H} (Q),.

@.22)
b*—b° -0 stronglyin L,(Q). @

The following theorem details the behavior of the various energies.

TaeoreM 4.3, — One has

~12 2
o[ et 2]
@.23) - strongly in C° ([0, T]),

;f A® grad o grad u‘dx~—>2j A® grad u grad udx
“~ J E

&

strongly in C°([0, T]);
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if &' denotes a subsequence of € such that H* converges to H in R (note that H® is a bounded
sequence of real numbers), then

&2
%J p* [%] dxA%H weak-* in L_ (0, T),
(4.29) o

if .. . , ' .
3 j A% grad 7* grad +* dx—\%H weak-* in L (0, T),
o

that is the energy associated to v* satisfies an equipartition principle.

For the subsequence ¢,
12 2
2)a ot 2 a Lot
weak-% in 'Lm (0, T), ’ '

1 f A¥ grad v grad ue'dx—\E(H#f
2), 2

Q

(4.25)
AP grad u grad udx)

weak-* in L_ (0, T).

Finally the following conbergehces also hold true:

(4.26) e—FE—H~0 strongly in %° ([0, TJ),
.27 BE-F-H 50 i R,
and
4.28) lim E* > B,
' while
(4.29) - E* tends to E° if and only if (4.22) holds true.
Results similar to (4.28), (4.29) also hold true for ¢, ¢°. @ ‘{ “‘:
The results obtained for #* and «* can be brought togéther in a statement on the

intimate behavior of ## itself. ~

TueOREM 4.4. — The solution w* of (3.1)-(3.4) can be decomposed as Jollows:

{4.30) ot ot ot
grad «*=P* grad u+grad ©*+R",
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where P° is the corrector matrix associated to the sequence A* and u is the solution of the
homogenized wave equation (3.20); 1° is the solution of (4.8) and satisfies

@30 o %E;_—AO weak-* in L (0, T; L, (Q)),
h grad v* =0 weak-* in L., (0, T;[L, (Q)]),
while -

\\

4.32) r'—0 strongly in %° ([0, T}; L, (@),
) B 1N R*=0 strongly in ¥°(0, T}; [L, @)™

REER Al

Convergence of R® will take place in better spaces if additional regularity is met by u and
P*® (cf. Theorem 4.1).

Futhermore the convergence in (4. 31) is strong is and only if

: @.33) . a~a -0 strongly in H (),
' b—b° -0 strongly in L, (),

in which case 8v*/0t and grad+* do not appear in (4.30). If (4.33) is not satisfied both
j (@v*f01)* dx and J (grad v’ dx converge (weak-* in L_(0,T)) to strictly positive
Q o :

Sunctions. @

Remark 4.4. — The presence of the terms dv%/0r and grad +® is in general unavoidable
. in the corrector result (4.30), which is one of the main results of this paper, @

Remark 4.5. — A more detailed study of the structure of 0v°{8t and grad+* has yet to
be performed. The new concept of H-measures has been recently proposed by
L. Tartar [T 3], so as to analyze such problems. @

Remark 4.6. — TIn the spirit of Remark 4.5 the analogue of (3.1)-(3.4) where the
Dirichlet boundary conditions have been replaced by periodic boundary conditions is of
interest. In this setting the bounded open domain € is replaced by the unit torus &,
1/g is an integer and all data are defined on . '

Consider the example where £ is taken to be zero, while

@.34) A*(x)=A(xle), P (X)=p(x/e),
a(x)=eca(xfe), b (x)=b(xfe),

with A in L, (@, RYx RY), p in L_, (&), a in HX®) and B in L, (¥) with
(4:35). , : '[ p(»)B(y)dy=0.
. € .
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The periodic analogue of (3. 1)-(3.4) reads as

p(i)a Y diy (A (f) grad zf)=0 in € x(0, w), '
. e

&
(4.36) , #(x, 0)=a*(x) in %,

gu»(x, 0)=5(x) in %.
at

Note that since the spatial reference domain is the unit torus the formulation (4.36)
implicitly implies periodic boundary conditions. The same remark applies to (4.38)
below.

Under hypotheses (4.34), (4.35), it is easily seen that, in the notation adopted in the
present paper, u, &, b°, u® are identically zero. Thus «* coincides with o° which is further
given by the quasi explicit formula ' '

@.37) - ' (x, :)=aV(’-", 5),
- & €

where V is the solution of

2 |
PO) T ~div,(AG) 812, V=0 in ¥x(0, o),

(4.38) V@, 0)=0() in ¥,

N, 0=p) ine
as _

The ~above ‘description (4.37) of ¢* is structurally more accurate than that of
Theorem 4.2. Let us however emphasize that an ansatz similar to (4.37) is doomed as
'soon as one departs from the above described example (4.34); the case of initial data
that exhibit an additional variation in x cannot be tackled .in this manner even for
constant A’s and p’s.

Finally note that the solution V of (4.38) is not periodic in s. This has to be related
to the study performed in [F] where an asymptotic expansion for the\f‘siys‘ﬁéiﬁ of linear
thermoelasticity in the periodic case leads to a double scaling in both\space and time
with no periodicity with respect to the fast time variable. @

RS

5. Proof of the corrector result for the wave equation

This section is devoted to the proofs of the various results announced in Section 4.
Proof of Theorem 4.1. ~ The proof is divided into four steps.
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First step. — Firstly (4.13)-(4.16) are proved. In view of the definition (4.5) of &,
(4.13) is a mere consequence of the Definition 2.1 of H—convergence and Theorem 3.1
applied to (4.7) implies (4. 16).

Convergence (4.15) is immediate in view of the.Definitions (3.5), (3.9) of p and 5°

216 S. BRAHIM-OTSMANE ef al.

together with the convergence of j A® grad & grad & dx to J AP° grad 4° grad &% dx
Q o
which is in turn easily obtained upon multiplication of (4 5) by & and integration by

parts

- The first equality in (4 11) together with (4.15), (4.16) imply the weak-* convergence
in L_(0, T)\\Qf & to ¢°. The statement (4.14) of strong convergence results from a
stralghtforward ‘application of Arzela-Ascoli’s theorem upon remarking that for any
positive real number £

J’!+h f dx‘ig’ “

Second step. — Following the method of proof devised in [T1], [Mul} for the elliptic
case, we consider the quantity X® defined for any @ in €= ([0, T]; € (Q)) by

(5.1)

Ml e e s
L2(0, Ti L2 @)

(5.2) 5{8=%j l:p (%l; %E?) + A®(grad #*—P* grad @) (gradu“ - P* grad d))] (x, Hdx.
Q

Developing X¢ (f) yields’
(5.3) K2 (1) =T (1) + I (&) + T ),

where

(n) =%J‘ [ (i;;a) + A® grad o grad u:l(x, t)a'x=€‘(t),.

5.4 I*(5) = f [p %‘f I%(—I)—+A"'P*‘ grad @ grad u‘} (x, fydx,

11 (a:)=l J [p (6(1)) +A® Ps grad O P® grad (I):I (x, ) dx.
2J)a at
We propose to compute the limits of I°, ITI®* and II® successively.

The limit of I* has already been computed in the first step; the result is stated in
~ (4.14). The quantity III*(#), as well as its time derivative, is bounded in L, (0, T)
because of the smoothness of ®. Thus III*(¢) converges strongly in €°([0, T]) to a
limit which is easily identified through a direct. application of the “div-curl lemma”
(Theorem 2.4); we obtain '

2

(5.3 MF@H-LI() =%J [ﬁ (2;?) +A® grad @ grad @} (x, £ dx,
o

' : strongly in €° ([0, T]).
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The second term II*(7) is clearly bounded in L_(0, T). Rewriting the term

- p*(B)dr) as (8/2¢) (p° ) and applying the time dependent version of the “div-curl lemma”

(Theorem 2.4) to the other term enables us to identify the weak-* limit of I (£) as IT{#)
defined as

(5.6) IH(n)= -—J [pi\iE %(:—)+A° grad @ grad u](x ) dx.
a

We will prove in the fourth step that the afore mentioned convergence actually takes
place in the strong topology of #°(I0, TJ).
Recalling (4.1), (4. 14), (5.5), {5.6), we conclude that

: ou_o0\?
G.7 X J [p (Bt a.r)
+A®(grad u— graé @) (grad u— grad @) (x, z)] dx

strongly in %° ([0, TD.

Thus

5.8) hm{ ”‘3“e ad i
En

%° ([0, T); Ly ()
’ EL : 2 i
+o || grad & —P* grad @|[Ze 4,1}, 1, (ﬂ)JN)}

au a2

=X,
- a: B

; {2
+ 8 || grad u—grad @ ||Zo o, 11: m, @,
€0 (0, THL2 (@)

Third step. — In view of the regularity properties of », namely, .

. ue€° ([0, T); Hj (),
(-9 ?e%"({o, T} L, @),

the functlon ® (and d®/dr) can be chosen so as to be arbitrarily close to u@nd dufadt)
in the topology of #°({0, T;" H5(Q)) (and %°{]0, TJ; L, Q)). Dee:omposmon of
O /0t — du/dt into the sum (B (01— BD[61) + (0D/dt — Du/dr) and of grad #—P* grad u
"'-mto the sum (grad & ~P*® grad ®)+P* (grad ®— gradu) and apphcatxon of Hélder’s

i mcquallty to the last terms yields, with the help of (5.8).

dut Bull?

10) Tmin
_:) { ‘o o

€% ([0, THL; ()

+a| grad u*—P* grad u(|%o o, 13, m)]";}
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du_od|?

<C,||=~-~
ot ot

0 (0, TH.2 (@)

+C, || sradu— grad @[30 go, ryrr., cns

where

C;=2[k, +sup (], meas Q) A,]

and

o5, N C,=2[alim | P*||Z,, v+ B sup (1, meas Q).

Ineguality (5.10) implies - (4 17), (4.18) because of the bounded character of P* in
L, @Y.

The convergence of (gradu*—P® gradu) in better spaces stated at the end of
Theorem 4.1 is obtained, for any finite p, by approximating grad ¥ by grad @ in ~
Co([o, ’I] [L,@I™ Gn place of C°(f0, TL; [L,(Q)) and using the assumed
L, (Q)}N ~bound on P Whepever p is infinite and ¢ is strictly greater than two the
approximation of grad u is performed in C° ([0, TI; [LAQI™ where (1/p)+(3/9)=(1/2);
the difference P*(grad u— grad @) is then controlled in C° ([0, TJ; [L, (]). The remain-
ing case (i.e., p=+ o0 and g=2) never occurs since Meyet’s regularity result (¢f. [Me])
ensures the boundedness of P*in [L, QI with ¢>2.

Fourth step. — We finally prove the uniform convergence of II*(¢) in €° ([0, T]). To
this effect we first note that, by virtue of (4.7),

é dut 9@
5.11) — —_— Nd
( ) azU [p ot ot ](x ) x}
o 2D oD '
=i | pP— — {{(x,dx+ —|{x, Hdx
L[”' at atZ]-(x) L[far](x-)
b ¢ - J [A‘ grad u* grad 62] (x, £)dx,
o ot '
1s bounded in L, (0, T) Thus

(5.12) f |: §;~ %?] (x, §)dx is relatively compact in %° ([0, T]).
dn the other hand, with the help of the Definition 2.2 of P&,

(5.13) v[ [A*P® grad @ grad #] (x, ) dx
' o
y ST oD
=3 f |:As grad wi-— grad 5‘] (x, Ddx
i=1Ja : Jx;
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N ' '
T oD ~
=3 { —div(A®e), e W >H‘ 1, mp oy (O
i=1 i

. X P
-y [A‘* grad wf grad ——5‘] (x, Ddx
S Ja dx;
=<K, # =1 gy, 1d @ (s

where k* is the sum of a fixed function in %° ([0, T]; H™(Q)) and of a bounded sequence
in €' ([0, T]; L,(€)). Thus, at the possible expense of extracting a subsequence €', we
may assume that

(5.14) k" >k strongly in %° ([0, T); H™*(Q)).

Consider  in ¥° ([0, TJ; L, (€2)) and write

(5:19) <K #D=Ch W=k ke, # S+ Ch—h, Bk by F =yt e, ).

In (5.15), ( > has to be understood as { , Du-1oyuh e @)
Then

(5.16) ||<k€'= ‘?’>_<k ”>”@°({o T1)~—{||k£ k”@“([o TLH @
+|| k- h”‘€°({0 T H“(n»}””s Il o0 7 B0 cay
"‘”h||<cs'°([0.T];JLzm))”“E |40 o, 32

+”k_h”%° o, i e || #ll.g co, 2 18 -

Choosmgk in €°([0, TJ; L, (Q)) that approximates k in %° ([0, T]; H~ 1(Q)), using (5.14)
and the convergence of # to u in %#°(0, T]; L,(Q) [cf (3.28)] yields the strong
convergence of {k°, ¥ Yy-1 g, 1@ () to (k U yy- 1((1) ulen(®. Thus

(5.17) f [A*P® grad @ grad #°] (x, ) dx is relatively compact in €° ([0, T]).

Statements (5.12) and (5.17) prove the strong convergence of II°(¥) i in fﬁ“ ([B, T]}. The
proof of Theorem 4.1 is complete. @

_ Proaf of Theorem 4.2. ~ The decomposmon {4.12) together with the convergence
L rcsult (4.16) immediately imply (4.21). Note that (4.21) can also be obtained through

-if-appllcauon of Theorem 3.2 to (4.8). The statement of conservation of the energy
sociated to ¢, i.e., the second equality of (4. I1), together with the Definitions 4. 10)
¢ and H* 1rnply that the strong convergences in (4.21) are equivalent to (4.22).

raaf of Theorem 4.3. — The proof is divided into four steps. The first step is a
k- pertaining to the convergence of the energy densities. The second step is
rned with the very proof of (4.24). The third step is devoted to the proof of
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(4.23) while the fourth step successively. proves (4.27) [and (4.26)], (4.28), the equiva-
lence statement (4.29) and finally (4.25). '

First step. — The equipartition of the kinetic and potentxai energy densities associated
to o* is a consequence of the “div-curl lemma”. Specifically the vector
{r (Bv‘/at) — A® grad +°) is a divergence free vector in ¢ and x which converges weakly
in [L, (@ x (0, THN*! to 0, while the vector (8v°/dz, grad +°) is a gradient in 7 and x that
converges weakly to 0 in [L, (Qx (0, D)N**. Thus

(5.18) - ' p (6;0 ) —A® grad o gradv*—0  weak-% in 2"(Qx (0, T)).
¥ T\ ¢

" The energy (1/2) [p®(0+*/85)* + A°® grad +* grad +°] is bounded in L, (Q_ x (0, T)) and thus .
its admits a weak-* converging subsequence in the vague topology of measures. ith
denotes the limit measure (which is a positive bounded measure on Q), we conclude with

_ the help of (5. 18) that

1 , €' N2 -
~pf (a” ) —\éh weak-* in 9" (Qx (0, T)),

(5.19) 2\ 1
5 A¥ grad o grad_vc'ei h weak-% in @' (Qx*(0, T)).

The convergences in (5. 19) express a statement of equipartition of the energy density.

“Second step. — It is actually possible to extend this result up to the boundary of Q
and to obtain (4.24) because of the homogeneous character of the boundary conditions
on 2. Since o° lies in L, (0, T; H}(Q)), the function ¢2° is a licit test function in the
first equation of (4.8) for any ¢ in ¢ (0, T). Upon integrating the resultmg expression
by parts we obtain ‘

(5. 20) [ ( J ( ) dx)(p(t) dt—jT(I Afgrad o* grad ﬂ‘dx) o (D) dr
4] Q
——I j % 6“’ dxdt.

The right hand side of (5.20) tends to zero since p ¢(0v5/0f) is bounded in
"~ L, {0, T; L,(Q)) while v* converges strongly to zero in %° ([0, T]; L,(€)). Since ¢ 1s
arbltrary,

o (e

'—J. [A? grad * grad %] (x, fdx—0 weak-* in L, (0, T),
n -
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while the conservation of energy (4.11) implies that for a subsequence H* such that H*
converges to Hin R

1 o 0F\? .
(5.22) EL[p ( i ) :'(x, ) dx

+ % J‘ [A® grad +* grad +*](x, H)dx —H strongly in %° ([0, T]).
0 ) H

Convergences (5.21) and (5.22) yield convergence (4.24).
Third step. — By virtue of the strong convergence (4.17) of du®/dt, the inequality

(5o Jeseomans [ ) s
Ja at a ot} &

i
at

(5.23)

o (t+h)— ot ®

<21,
ot ot

3
L2 (@)

L {0, T; L2 (@) ||

together with Ascoli-Arzela’s theorem implies the first part of (4.23), The second part
~of (4 23) is deduced from the first part of (4.23) and the uniform convergence (4.14)
of € to e°.

Fourth step. — Setting a*=a*+ (& ~ a“) B=bC4 (b~ b”) in the expression (3. 12) for E*
yields,

(5.24) Ee=E*+ H° -+ Fe,

where B is given in (4.9), H® in (4. 10) and
| (5.25) Fe= f [p*6° (b°—b%) + A® grad &* grad (a®— ")) dx.
[+]

By virtue of the Definitions (3.5), (3.9) of p and 4° and by applzcatlon aof the “div-
cul lemma” to the vectors A" grad & and grad (a*— &) ‘the term F* i§ 'seott: to converge
to zero, which proves (4.27). Convergence (4.26) is an immediate consequence of
(4.27) in view of (3.13), (4. 11) and Ascoli-Arzela’s theorem which yields [¢f. (5. D]

J.lj [f (x, ) % (w—z?)] (x, ) dxds -0 strongly in %°(f0, T]).
0Jo .

ince E* converges to E° [¢f. (4.15)] while H® remains positive, (4.28) is a consequence
27). The statement (4.29) is also a consequence of (4.27).
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Finally (4.25) is deduced from (4.26), (4.23) and from the following convergence
result

(5.27) lj I:p (aus) — A¥ grad o* grad u* ](x, Hdx
2 Jal \ Ot
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2 - .
—Alj [E(%?) — A grad u grad u:l (x, Hdx weak-* in L (0, T).

Indeed upon writing #* as 17‘+v convergence (5.27) is deduced from (4.23), (4.24)
since it is easﬂy shown, through multiplication of the first equality of (4.7) by
¢ (0 e €y 0, 61)) and mtegrat:on by parts, that

, ' G . ' . :
(5.28) J [p‘ m ilt — Af grad « grad v"] dx—0 weak-*inL_(0,T). @
a

6. Homogenization of the heat equation

This short section is devoted to the study of the homogenization of the heat
equation. The proofs are very similar to those of Section 3 and will merely be sketched
here. Attention is focused on the study of the strong convergence of the solutions in
L, (0, T; L, (Q)) and in C°([0, T]; L, (Q)).

Consider the following heat equation:

6.1 ﬁa‘z_’; ~div(K® grad ®)=g in QX (0, T),
(6.2) . =0 on dQx(0, T),
6.3) . “O)=¢ inQ,

where the scalar function 1° is the unknown while the other guantities are given data of
the problem. They are assumed to satisfy the following hypotheses:

. pre L, (),
(6.4} pr—B weak-% in L, (Q),
LB @)EN(0<h, <X,;), almost everywhere in Q,
(6.5) K Eyﬂ (ms. B; Q):
KB KO,
but K° is not necessarily symmetric,
6.6 . ~ geL, 0, T B! (@),
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cel, (Q),
¢—c¢ weakly is L, (),
pe—PBec weakly in L,(Q), ' )
“=Be/B.

The equations (6.1)-(6.3) are well known to yieid a umque solution; specifically, the
following theorem holds true:

6.7)

‘THEOREM 6.1, — Under hypotheses (6.4)-(6.7), there exists a solution v° of (6.1)-(6.3)
satisfying

(6.8) e %° ([0, T}; L, () N L, (0, T; H ().
Unigueness holds in the (larger) class

(6.9) ©eL, (0, T; L,(O) N L, 0, T; H @)).

Finally if o '

()= 1f B (=9 (x, ) a’x+f J [K® grad ©* grad ] (x, 5) dxds
2 Ja o Ja :

6.10) .
= wJ [B* (¢%)%] (x) dx,
2 Jo
then
4
(6.11) =D+ J‘ & T )u1y, ny®ds. ®
0
Remark 6.1.. — In strict parallel with Remark 3.3, consider an element 1° of

L, (0, T; H(Q)) which is also a weak solution of (6.1). Then B*t* is shown to belong
to €° ([0, T, H™ (@) N ¥2 ([0, T]; L, () and the initial condition-(6. 3} for 1° is exactly
. equivalent to the initial condition

(6.12) : FHO)=Fc¢ nQ @

By virtue of (6 10), (6.11) together with (6.4)- (6. 7) the following estimate holds
for = \“ w
(6.13) t* is bounded in L, (0, AT; L, ()N L, (0, T; H: (Q)).

. Let us introduce the homogenized heat equation
ot . 0 . ‘
B o —div(K° grad ©)=¢g in Qx(0, T),

=0 on dQx(0,T),
1(0)=¢® in Q.
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The following homogenization resuit holds true:

THEOREM 6.2. — The solution T° of (6.1)-(6.3) converges to the solution 1 of (6.14) in
the following sense :

(6.15) =1 weak-*in L0, T; L,(@)NL,(0, T; H}(Q). @
The proof is very close to that of Theorem 3.2 (cf. [BeLP], Chapt. 2, p. 242, [8a],

Chapt. 5, Theorem 6.2). In particular the strong convergence of B** to Pt in
%° ([0, T]; H™ ' (Q)) is used in a crucial way. It will not be reproduced here.

G
A further gonvergence property is more specific to the heat equation, namely the
TareOREM ©.3. — In the context of Theorem 6.2,

(6.18) T—1 stronglyin L0, T; L, (). @

Proof of Theorem 6.3. — The proof of Theorem 6.3 is a direct consequence of the
Lemma 6.1 below, in view of (6. 13} together with the fact that

£

6.17) pe %"? in bounded in L, (0, T; H~*(Q)).

LEMMA 6.1. — Consider a sequence z* such thiat
Z is bounded in L, (0, T; HJ (Q),
6.13) e ‘Z—z: is bounded in L, (0, T; H™' (@),

where B° satisfies (6.4). Then z* is relatively compact in L, (0, T; L»(Q)). '@

Proof of lemma 6.1. — Extract from ¢ a subsequence €' such that z¥ converges weakly
to some z in L, (0, T; H}(Q)) while 8z converges to iz weakly in L, (0, T; L, (€}))
and strongly in L, (0, T; H~1(Q)). Because

T T o
{6.19) f J. Bs'(zg'_é)zdxfﬁ:‘[ (B2, 2 — 2 )n1 (), uh @ () dt
o Ja -

0
. T T -
+f fﬁ*’?dxdt—j '[ﬁs‘zszdxd:,
0 JO 0 J£2 .

and because the right hand side of (6.19) is seen to converge to zero, z° is relatively
compactin L, (0, T; L, (Q)). @

Remark 6.2. — The statement that

6.20) v —1° strongly in €°([0, T]; L, (©Q)),
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is generally false, even if p*=1, K*=1, and g=0 as shown by Counterexample 6.1. Note
however that it is proved in the next section that

{6.21) Fv' -t strongly in °(f0, T); L, (Q) .

for any strictly positive real number x. @ ‘ ‘
Counterexample 6.1. ~ Consider a sequence A® of eigenvalues of the Dirichiet problem q
for the Laplace operator that tends to infinity, and let y* denote the corresponding
eigenfunction, i.e., :
—Ay*=2p in Q,
(6.22) ¥=0 on 89,
17y =1

Then z* defined by

(6.23) | 2 (x, )= 5 ()
satisfies '
‘Zi: —AzZ=0 in Q%(0, ),
(6.24)
Z=0 on dQx(0, c0),

Z(0)=)F in Q.
It is easily seen that

=0 weak-x in L, (0, T; L, (Q)) N L, (0, T; H} (),

(6.25) e

Z*-0 strongly in L, (0, T; L,(Q)),
while
(6.26) 2 lco qo, 0 L2 can =1l =1. @

7. The corrector result for the heat equation %

This section is devoted to the study of the corrector for the heat equation (6.1)-(6.3).
~As in the case of the wave equation the solution 1 is split into two terms 7° and 6%, A

‘corrector result is derived on the term T°. The term & is shown to be a initial layer in
th #°([0, T); L,(Q)) and L, (0, T; H}(Q)) topologies, in contrast with the perennity
the equipartition of the energies demonstrated in the case of the wave equation. The
are only sketched since they closely follow those of Section 5. Only the initial
Jinvestigated in a detailed manner.
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The bulk of the resuits presented here can be found in [BeLP], Chapt. 2, Section 2. 11,
although we believe that our approach is complementary especially because the treatment
of the initial layer ¢ is original.

The analogues d° (1) and D° of 4*(¢) and D* are defined as

d° ()= ! f B, o dx—i—J,J [K® grad « grad t](x, §) dxds,
2 Jo oJa ‘

a.n ]
~ po-1 f [B ()] () d.
2,

Then, as iﬁgﬁhgorem 6.1,

T
(752) d° (t)=DO+'[ (g "-'>H"1(n).né @ (8 ds.
[H]
As in the case of the wave eqﬁation', it is possible to extract a subsequence €' of & such .
that : -
0.3 ' d¥ —d v'feak-* iln L, (0, T,
D¥—-D in R
Remark 7.1. — The subse_quexice d® can be proved to converge strongly to d in
€@, T). ® ‘
In general . A
(7.4) © d@®#d°() and  D#D®,

(cf. Proposition 7.1 for further details).
We define 7° and " as the solutions of

-

pe aa_Tt —div (K® grad T)=g in Qx(0, T),

7.5 .
-3 T=0 on 0Qx(0;T),
T0)=c® inQ,
FiL: . ;
Bt — —div (K® grad 6)=0 in Qx{0, T),
(1.6 ot :

=0 on 6Qx (0, T),
L=~ in O,

and introduce the corresponding quantities

(= ! J 18 (%1 (x, I)dx+JtJ [K* grad T° grad T (x, ) dx ds,
7.7 Zda - - voe .
4 ]'jl:= % -[ [Bz (CO)Z] (x) dx,
. Q _ i}
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5 0= '[ [B*(69)*1(x, ) dx+f [K*® grad @ grad 6°](x, s)dx ds,

{7.8) oJ0
=3 f [B*(c* = ] (9 . "
1]
Then
(7.9 a (t)=ﬁa+L (& T Du-t @, mh @ (©)ds on [0, T,
8 ()=A* on [0, T].
Obviously
7.100  r=Tie

The respective behawours of the functions T° and. ¢ are successwely investigated and
' the obtained results are summed up in Theorem 7.3.

As far as T is concerned we obtajn the

- TueoreM 7.1. — The Jollowing convergences hold true:

(7.11) @ —d°® strongly in €° (0, T,
7.12) | DoD° i R,
(7.13) Tt weak-% in L, (0, T; L, (@) N L, 0, T; H(Q),

where 1 is the solution of the homogenized heat equation (6.14).
Furthermore, the following corrector result holds true:

(7.14) - Tt strongly in €°([0, T]; L, (Q)),

grad T°=Q" grad T+R®,

(7.15) grad”
R*—> 0 strongly in L, (0, T; [L, (O],

where QF is the corrector matrix associated to the sequence K°. @

‘Remark 7.2. —-As far as R is concerned results of convergence in better spaces can
_be obtained in a manner similar to that of the wave equation. @

: . Sketch of the proof of Theorem 7.1. — The proof of Theorem 7.1 c‘lme‘ﬁyk follows that
_ :_of Theorem 4.1. The quantity under mvestlgatlon is

L ]6) ?'g (t)= E f [65(.?2-_(1))2] (x, t)a'x

- Q : 7 |

+ JW J [K*(grad T~ Q* grad @) (grad T Q° grad ®)](x, 5)dx ds.
0Jn o .

o pay due attention to the lack of symmetry of K* in developing (/). ®
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As far as 0° is concerned we obtain the
THEOREM 7.2. — The following convergences hold true:

(7.17) 0 —0 weak-* in L, {0, T; L, () N L, (0, T; H} (@).

The convergénce in (7.17) is strong if and only if
(7.18) ¢—c® =0 strongly in L, (Q).

Finally, for each strictly positive real number x,

(7.19)  EF=R0 strongly in €°({0, T L,(@)NL, (0, T; Hg (). @

Proof of Theorem 7.2. — Convergence (7.17) follows through direct application of
Theorem 6.2. The Definition (7.8) of A® together with the second equality of (7.9)
imply the equivalence between (7. 18) and the strong coavergence in (7.17).

o
g

The function 6 (x>>0) belongs to ¥° ([0, T]; L, (Q)) as well as to L, (0, T; Hj (Q)) -

and satisfics
i % (709 —div (K® grad (£*0) =k~ *p*0° in Qx(0, T),
- (7.20) PeE=0 on dQx(0, T,
() (0)=0 in Q.
Since € lies in L, (0, T; L, (£2)). ‘
(7.21) k" 1pEgfel, (0, T; L, (Q)),-
and the multiplication of the first equation of (7.20) by 8 is licit. It yields, for every ¢
in [0, T], ‘
R - ) .
(7.22) % ﬁ“J B (6921 (x, ©) dx+J sz“-[ [K*® grad ° grad 6°)(x, 5)ds
[+ ' 0 o |,
1
= KJ s~ J [B® (8% (x, 5)ds.
0 Q

Theorem 6.3 immediately implies the convergence to zero of the right hand side of
(7.22) for any positive ¢ and strictly positive k. The uniform coercivity and boundedness
properties of B° and K*[¢f. (6.4), (6.5)] together with (7.22) finally lead to the statement
(7.19) of strong convergence. @

The “heat equivalent™ of Theorem 4.3 is now stated.

ProrosiTion 7.1. — The following convergences hold true
(7.23) de—d*—A* >0 strongly in €° ({0, T,
(7.24) Di-DF—-A*—0 in R,
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and
(7.25) UmD*=D° while D* tends to D° if and only if (7.18) holds true. Results similar

to (7.25) also true for d¢, d. ¢ '
Remark 7.3, — In analogy with the case of the wave equation, each of the terms
entering the various “energies” can be tracked. In particular

! j B* (x5 dx —>1 { B(t)*dx stronglyin %° ([0, TP,
2 Ja 2 Ja
(7.26) % J B (6> dx—0 weak-* in L_ (0, T) and almost everywheré on (0, T),
0
1 j Be (%) d‘x—\1 j B(x1)?dx weak-*in L_(0, T). ®
2 Ja 2 jo

Proof of Proposition 7.1. ~ Setting ¢*=¢c®+ c*—¢° in the expression (6.10) for D*
yields

. ¥ Di=D+ A"+ F,

‘where D is given by (7.7), A*by (7.8) and

(':7'.‘:'28) ' ‘ F= f pe (cﬂ—cO)_dx.
Q

By virtue of the Definition (6.7) of ¢°, F* converges to zero which proves (7.24);
‘convergence (7.23) follows immediately from (7.24) in view of (6.11), (7.9} and Ascoli-
Arzela’s theorem which yields

: .
(7.29) J (g, ©*—7 Su-t @, Hs @ () ds =0 strongly in #° ([0, T].

The end of the proof of Proposition 7.1 is analogous to the case of the wave equation
(cf. 'the proof of Theorem 4.3 in Section 5.) @ : '

The results obtained for T and &° can be assembled in a Stélt'e'rherit concerning ¢ itself.

TueoreM 7.3. — The solution ° of (6.1)-(6.3) can be decomposed as follows:
=1+ 0%+,
grad 1°=Q° grad ¢+ grad 6°+ R

'where QE is the corrector matrix associated to the sequence K*® and t is the so[utwn of the
-homogenized heat equation (6.14); 0% is the solution of (7. 6) and SatleE.S' g
RPN B I F—0 weak-*in L (0, T; L, () N L, (0, T; HS (Q)),
. FOF—0 strongly in @° [0, TL; L, (@) N L, (0, T; HE (Q)), ~
strictly positive rr.;al number K, while

=0 strongly in €° ([0, TI; L, (),
R*—0 stromglyin L 20, T; [L, M.

(7.30)

gence of R® will take place in better spaces zf additional regularity is met by <
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Furthermore the convergence in (7.31) is strong if and only if
(7.34) *=c® >0 stromgly in L,(Q). @

Remark 7.4, — The field 1° cxperiences an initial layer in the topologies of
%° ([0, T); L, () of and of L, (0, T; HY(Q)) [ef- (7.31)—(7.32)]. Such a layer vanishes
[i.e, x can be taken.to equal to zero and the convergence in (7.31) is strong] if and
only if (7.34) occurs, in which case 8° can be dropped all together from (7.30). @

Note added in Proof. — In the context of Remark 4.5, 'the two last authors have
computed the measure limit 4 [defined as the limit of (1/2) [p® (8v°/21)* + A® grad +* grad +7],
see (5.19)] in the case where the only oscillations come from the initial conditions, i.e.,

3

whenever S e
PFPE=px), A'(x)=A(x),

with p and A smooth [see forthcoming paper entitled: “Oscillations and energy densities

in the wave equation”, to appear in: Communications in Partial Differential -

Equations]. The analysis is based on a determination of the H-measure associated to
(8v%/8t, grad v°) and it elaborates on the work, on that same topic, of L. Tartar [T3] and
of P. Gérard [“Microlocal Analysis of compactness”, to appear in: Non linear partial
differential equations and their applications, Collége de France Seminar 1989-1990, Pitman
- Research Notes in Mathematics, Longman, Harlow].

The same problem of computation of 4 in the case where the coefficients periodically

oscillate, i. e.,
pe(x)=p(f); Ae(x)=A(f),
& £

[cf Remark 4.6] has recently been treated by P. Gérard [« Mesures semi-classiques et
ondes de Bloch », to appear].
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