QUASISTATIC CRACK GROWTH IN FINITE ELASTICITY

GIANNI DAL MASO, GILLES A. FRANCFORT, AND RODICA TOADER
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1. INTRODUCTION

In this paper we present a new existence result for a variational model of quasistatic
growth for brittle cracks introduced in [15] and based on Griffith’s idea (see [16]) that the
crack growth is determined by the competition between the elastic energy of the body and
the work needed to produce a new crack, or extend an existing one. The main feature of this
model is that the crack path is not prescribed, but is a result of energy balance. In order
to obtain our existence theorems in any space dimension and for a general bulk energy, we
introduce a mathematical formulation of the problem in a suitable space of functions which
may exhibit jump discontinuities on sets of codimension one.

We now describe the model in more detail. The reference configuration is a bounded
open set ) of R™ with Lipschitz boundary 9Q = dpQ2 U Iy, with 9pQ N INyQ2 =@. On
the Dirichlet part 0pQ of the boundary we prescribe the boundary deformation, while on
the Neumann part On{2 we apply the surface forces. In our formulation, a crack is any
rectifiable set I contained in € and with finite n — 1 dimensional Hausdorff measure. We
assume that the work done to produce the crack I' can be written as

K(I) = /P\aNQ k(z,vr(x))dH" " (z),

where v is a unit normal vector field on I" and H"~! is the n — 1 dimensional Hausdorff
measure. The function x(x,v) depends on the material and satisfies the standard hypotheses
which guarantee the lower semicontinuity of K. Since k(z,v) depends on the position x
and on the orientation v, we are able to deal with heterogeneous and anisotropic materials
(see Subsection 3.2).

We adopt the framework of hyperelasticity and assume that the bulk energy of the un-
cracked part of the body is given by

W(Vu) = Wz, Vu(z)) dx,

o\r
where w: Q\I' — R™ is the unknown deformation of the body, and W (z,£) is a given
function depending on the material. We only suppose that W (z, ) is quasiconvex with
respect to £ and satisfies suitable growth and regularity conditions (see Subsection 3.3).
It is convenient to consider the deformation of the uncracked part Q\I' of the body as a
function u defined almost everywhere on €, whose discontinuity set S(u) is contained in
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I'. An adequate functional setting for these deformations is a suitable subspace of the space
GSBV (;R™) introduced in [10] and studied in [1] (see Section 2).

For every time ¢ € [0, 7], the applied load is given by a system of ¢-dependent body and
surface forces. We assume that these forces are conservative and that their work is given by

f(t)(u) = / F(t,m,u(w))dz, g(t)(u) = G(tvxau(x))dHnil(m) ’
o\r 9502

where g€ is a subset of On(2, and F' and G satisfy suitable regularity and growth condi-
tions (see Subsections 3.4 and 3.5 and Section 9). To avoid interactions between cracks and
surface forces, we impose that all cracks remain at a positive distance from 9g§ (see (3.1)
and Remark 3.6).

We adopt the following terminology: an admissible configuration is a pair (u, I"), where
I' is an admissible crack and w is an admissible deformation with jump set S(u) contained
in I'. The total energy of (u,I") at time ¢ is defined by

E)(u, I') == W(Vu) + K(I') = F(t)(u) = G(t)(u) .

For every time ¢ € [0,T] we prescribe a “continuous” boundary displacement 1 (t) on
OpS\I'(t), where I'(t) is the unknown crack at time ¢. We thus assume that () is the trace
on Opf) of a function in a suitable Sobolev space on 2, so that we cannot a priori impose
a “strong discontinuity” at the boundary, like a jump in the prescribed displacement v (t).
Moreover, we also assume that ¢ +— 1)(¢) is sufficiently regular (see Subsection 3.6). The
set AD(¢(t), I'(t)) of admissible deformations with crack I'(¢) and boundary displacement
(t) is then defined as the set of deformations u in a suitable subspace of GSBV (Q;R"),
whose jump set S(u) is contained in I'(¢) and whose trace agrees with (t) on OpQ\I'(¢).

In the spirit of Griffith’s original theory, a minimum energy configuration at time ¢ is an
admissible configuration (u(t), I'(t)), with u(t) € AD(3(t), '(t)), such that

E@)(u), I'(t)) < EX)(u, I)

for every admissible crack I' containing I'(¢) and for every u € AD(3(t), I'). In other words,
the energy of (u(t), I'(t)) can not be reduced by choosing a larger crack and, possibly, a
new deformation with the same boundary condition (see Subsection 3.8).

An irreversible quasistatic evolution of minimum energy configurations is a function ¢ +—
(u(t), I'(t)) which satisfies the following conditions:

(a) static equilibrium: for every ¢t € [0,T] the pair (u(t),I'(¢)) is a minimum energy
configuration at time t;

(b) irreversibility: I'(s) is contained in I'(¢) for 0 < s <t < T

(c) nondissipativity: the derivative of the internal energy equals the power of the applied
forces.

In condition (c) the (loosely named) internal energy is defined by
EM(O)(u(t), T(t)) == W(Vu(t)) + K(I'(t)),

while the power of the external forces is given by
/ DeW (, Vu(t))vh(t) dH™ 1 + / O F(t,x,u(t))u(t) dr +
OpQ\I'(t) Q

+ .G (t,x,u(t))u(t) dH™
95

(1.1)

where v is the outer unit normal to 99, ¥(t) and 4(t) denote the time derivatives of ()
and u(t), while 9;W, 0.F, and 0,G are the partial derivatives of W (z,§), F(t,z,z2),
and G(t,z,z) with respect to £ and z. As 0:W(z,Vu(t))v is the boundary traction
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corresponding to the deformation w(t), the first term in (1.1) is the power of the surface
force which produces the boundary displacement (t) on dpQ\I'(t).

Unfortunately, formula (1.1) makes sense only if ¢(t) and u(t) are sufficiently regular with
respect to t (see Remark 3.9), while there are quasistatic evolutions that are discontinuous
with respect to ¢t. Therefore we prefer to express the conservation of energy in a weaker
form, which makes sense even if u is not regular (see Subsection 3.9).

The main result of this paper is the following existence theorem: if (ug, [) is a minimum
energy configuration at time ¢ = 0, then there exists an irreversible quasistatic evolution
t— (u(t), I'(t)) with (u(0),I'(0)) = (uo, o) (see Theorem 3.13).

As for the hypothesis of the previous theorem, we remark that for every initial bound-
ary displacement ¥ (0) and for every crack I' there exists a minimum energy configuration
(ug, I'p) at time ¢t = 0 with Iy containing I" (see Theorem 3.8). For special initial displace-
ments ug it is easy to determine the cracks Iy such that (ug,Ip) can be used as initial
condition in the existence theorem. For instance, if ¢(0) and wy coincide with the identity
map u;q, then (u;q, [H) is a minimum energy configuration at time ¢ = 0 for every crack
Iy, under very natural assumptions on W, F, and G (see Remark 3.12).

Previous results on this subject have been obtained in [9] in the case n = 2 for a scalar-
valued u and for W (&) = |£]?, which corresponds to the antiplane case in linear elasticity.
In that paper the admissible cracks are assumed to be connected, or with a uniform bound
on the number of connected components. This restriction allows to simplify the mathemat-
ical formulation of the problem. Indeed, in [9] the cracks are assumed to be closed and,
consequently the deformations belong to a suitable Sobolev space.

These results were extended to the case of planar linear elasticity by Chambolle in [7]. In
both papers the existence of a solution is obtained by an approximation argument, where the
approximating cracks converge in the sense of the Hausdorff metric, while the approximating
deformation gradients converge strongly in L2.

The paper [14] removes the restriction on the connected components of I' and on the
dimension of the space, and introduces a weak formulation in the space SBV(f2). The
function w is still scalar-valued and this hypothesis is used to obtain some compactness
results which need a uniform L°°-bound that, in the scalar case, can be easily obtained by
truncation. It also provides a jump transfer theorem that is instrumental in the present
analysis (see Subsection 5.1).

In the present paper, we deal with the vector case, where the deformation u maps a subset
Q of R™ into R™ (or, more generally, into R™, so as to include the antiplane case when
m = 1). This forces us to introduce a weaker formulation in the larger space GSBV (2; R™),
where a compactness theorem holds under more general hypotheses. Another new feature
of this paper is that we consider the case of finite elasticity, with an arbitrary quasiconvex
bulk energy with polynomial growth, and allow for a large class of body and surface forces.
In truth however, our formulation is not all encompassing; it does not allow for constant
body loads like gravity, or conservative surface loads like pressure.

As in prior works [9], [7], [14], our result is obtained by time discretization. We fix a
sequence of subdivisions (t})o<;< of the interval [0,77, with 0 = ¢) <t} < --- < th71 <
th = T and limy, max;(t — t}:l) = 0, and define by induction an approximate solution
(ui, I}) at time ¢4 : let (ul, I'?) := (uo, [0), and, for i = 1,...,k, let (ul,I}) be a solution
of the minimum problem

min {E(t})(u, ) : Iy € I', we AD((ty), I')},

whose existence can be deduced from the GSBV compactness theorem of [2]. For every
t € [0,T] we consider the piecewise constant interpolations

Tr(t) = t};, ug(t) := ui, Ii(t) :== F,i,
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where i is the largest integer such that ti <¢. The solution (u(t),I'(t)) of the continuous-
time evolution problem will be obtained by passing to the limit in the sequence (ug(t), Ik (t))
as k — oo.

To this aim we introduce a new notion of convergence of sets, called oP-convergence,
related to the notion of jump sets of SBV functions. We study the main properties of this
convergence and prove, in particular, a compactness theorem (see Subsections 4.1 and 4.2).
Using these results we show that there exists a subsequence, still denoted I'x(t), such that
Iy (t) UONSQ oP-converges to a crack I'(t) for every t € [0,T]. Since this subsequence does
not depend on ¢, the cracks I'(t) are easily shown to satisfy the irreversibility condition (b).

We now fix ¢t € [0,7] and, using the GSBV compactness theorem, we extract a further
subsequence of wug(t), depending on ¢, which converges to some function wu(t). The very
definition of o?-convergence implies that the jump set S(u(t)) is contained in I'(¢), so that
u(t) € AD(¢(t), I'(t)). Then we show that (u(t), I'(¢)) is a minimum energy configuration
at time ¢ (condition (a)), using the fact that (u(t), I'x(t)) satisfies the same property at
time 7,(t). A crucial tool in the proof of this stability result for minimizers is the jump
transfer theorem, established in [14] in the case of SBV functions, and extended here to
the GSBV setting (see Subsections 5.1 and 5.2).

It remains to prove condition (¢) on the conservation of energy, in the weak form given
in Subsection 3.9. To this aim we introduce the functions

Ok(t) == (OW(Vur(t)), V(1)) — (OF (i (t)) (ur(t)), P(t)) —
— F () (ur(t)) = (06 (1i(1)) (ur (1)), ¥ (t)) — G(1)(uk(t)),
where (-,-) denotes the duality pairing in suitable L” spaces, 0F and 9G are the differ-
entials of the functionals F and G in these function spaces, while F and G are the time

derivatives of F and G. By using the minimality property which defines (u}, I'}), we prove
the fundamental estimate

75 (t)
E(Tk(t))(uk(t), Fk(t)) S 5(0)(U0,F0) +/0 (‘)k(s) ds + Rk;

with Ry — 0 as k — oo (see Section 6).

The main difficulty is to pass to the limit in the first term in the definition of 0y(t),
since Vuyg(t) converges only weakly. We overcome this difficulty by proving a technical
result (Lemma 4.11), which shows that convergence of the energies implies convergence of
the stresses (see Subsection 4.3). Since & is lower semicontinuous, we can pass to the limit
in the previous estimate, obtaining the energy inequality

E(O)(u(t), T(1)) < E(0)(uo, T) + / 6(s) ds

where
0(t) = (OW(Vu(t), Vi (1)) — (OF (£)(u(t)), (t)) —
— F()(u(t)) — (G (1) (u(t)), (1)) — G(t) (u(t)) -
Recalling the weak formulation of condition (c) given in Subsection 3.9, it remains to
show that

EB)(u(t), (1)) > E(0)(uo, Ty) + / 0(s) ds .

To prove this inequality we consider a sequence of subdivisions (s )o<i<;, of the interval
[0,¢], with 0 = 59 < sf < -+ < s " < s* =t and limg max; (s, — s ') = 0, and compare
EGsi M (u(sy ), I(si ) with E(sh)(u(sh), I'(sh)), thanks to the minimality property of

(u(si '), I'(si™)) given by condition (a). In this way we obtain an estimate of the form

E(t)(u(t), I'(t)) = £(0)(uo, I'o) + Ok(t) ,
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where O(t) is an intricate expression that can be written in terms of Riemann sums of the
functions (s), Vib(s), 1(s), F(s)(u(s)), and G(s)(u(s)) (see Section 7). Although these
functions are only Lebesgue integrable, O (¢) converges to the integral of § on [0,¢] for a
suitable choice of the subdivisions (s) (see Subsections 4.4 and 5.3).

Finally we prove a result which can be used to justify the numerical approximation of
the quasistatic evolution based on time discretization. Even if the deformation w(t) is not
uniquely determined by the crack I'(t), for every t € [0,7] the elastic energies and the
crack energies of the discrete-time problems converge to the corresponding energies for the
continuous-time problems (see Section 8).

2. SPACES OF FUNCTIONS WITH BOUNDED VARIATION

Throughout the paper £ and H" ! denote the Lebesgue measure in R” and the n — 1
dimensional Hausdorff measure, respectively. Unless otherwise specified, the expression
almost everywhere (abbreviated as a.e.) always refers to L. If 1 <r < oo and E is a set,
we use the notation || - ||, or||-||, g for the L™ norm on E with respect to £ or H"~! (or
to some other measure as dictated by the context).

Given two sets A, B in R" we write A C B if H" 1(A\B) = 0 and we write A = B if
H" Y (AAB) = 0, where AAB := (A\B) U (B\A) denotes the symmetric difference of A
and B.

We say that a set I' C R™ is rectifiable if there exists a sequence I; of C'-manifolds
of dimension n —1 such that I' = |J, I; (these sets are called (H""',n — 1) rectifiable
n [13]). A unit normal vector field v on I' is an H"~!-measurable function v: I' — R™,
with |v(x)| =1 for H" !-a.e. z € I', such that v(z) is normal to I; for H" l-a.e. x € I}
and for every i. It is well-known that every rectifiable set has a unit normal vector field
(indeed, infinitely many, since there is no continuity assumption) and that the definition
does not depend on the decomposition of I' (see, e.g., [4, Remark 2.87]).

Let U be a bounded open set in R™ and let u: U — R™ be a measurable function.
Given x € U we say that @(z) € R™ is the approzimate limit of u at x, and write
(z) = aplimu(y), if for every £ > 0 we have

lim oL ({y € Bylw) : July) — i(x)| > &}) = 0, (2.1)

where B,(x) is the open ball with centre x and radius p. We define the jump set S(u) of
u as the set of points x € U where the approximate limit of u does not exist. Given z € U
such that @(z) exists, we say that the mxn matrix Vu(z) is the approzimate differential

of u at x if
ot 1) = (2) = Vu(o)(y — 2
Yy ly — =

The space BV (U;R™) of functions of bounded variation is defined as the set of all u €
LY(U;R™) such that the distributional gradient Du is a bounded Radon measure on U
with values in the space M™*™ of mxn matrices. If u € BV (U;R™), we can consider the
Lebesgue decomposition Du = D*u+ D®u, where D®u is absolutely continuous with respect
to L" and D?®u is singular with respect to £™. In this case the approximate differential
Vu(z) exists for a.e. x € U and the function Vu belongs to L'(U; M™*™) and coincides
a.e. with the density of D®u with respect to L™ (Calderén-Zygmund Theorem, see, e.g.,
[4, Theorem 3.83]). Note that S(u) coincides with the complement of the set of Lebesgue
points for w, up to a set of H® '-measure 0.

The space SBV(U;R™) of special functions of bounded variation is defined as the set
of all w € BV (U;R™) such that D®u is concentrated on S(u), i.e., |[D*u[(U\S(u)) = 0.
As usual, SBVj,.(U;R™) denotes the space of functions which belong to SBV (U’; R™) for
every open set U’ cc U.

=0.
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Let us fix an exponent p, with 1 < p < 400. The space SBVP?(U;R™) is defined as the
set of functions u € SBV (U;R™) with Vu € LP(U;M™*") and H"(S(u)) < +oo0.

Definition 2.1. A sequence uy converges to w weakly in SBVP(U;R™) if and only if
ug, uw € SBVP(U;R™)NL>®(U; R™), up — w a.e. in U, Vup, — Vu weakly in LP(U; M™*")
and |lug|leo and H™ 1 (S(ux)) are bounded uniformly with respect to k.

If ue WhP(U;R™), then v € SBVP(U;R™) and S(u) = @. The following compactness
theorem is proved in [1] (see also [4, Section 4.2]).

Theorem 2.2. Let uy be a sequence in SBVP(U;R™) such that ||uk|lec, ||Vuklp, and
H"1(S(uy)) are bounded uniformly with respect to k. Then there exists a subsequence
which converges weakly in SBVP(U;R™).

This result is not enough for the study of the fracture problem in dimension n, because we
have no a priori bound on the L® norm of the solutions. To overcome this difficulty we have
to use the wider space GSBV (U;R™) of generalized special functions of bounded variation,
defined as the set of all functions u: U — R™ such that ¢(u) € SBV,.(U,R™) for every ¢ €
CY(R™;R™) with supp(Vy) CC R™. It is easy to see that SBV (U;R™) C GSBV (U;R™)
and GSBV(U;R™) N L>®(U;R™) = SBVjoe(U; R™) N L>®(U;R™). If u e GSBV(U;R™),
then the approximate differential Vu(z) exists for a.e. € U (see [3, Propositions 1.3
and 1.4]).

We define GSBVP(U;R™) as the set of functions u € GSBV (U;R™) such that Vu €
LP(U;M™*") and H"1(S(u)) < +o0. If u € GSBVP(U;R™) and ¢ € C'(R™;R™) with
supp(Vyp) CC R™, then the function v := ¢(u) belongs to SBVj,.(U;R™) and S(v) C
S(u). As Vv =Vp(u)Vu a.e. in U, we have Vv € LP(U; M™*™). Since by [4, Section 3.9]

|Do|(U) < /U Vo(@)] da + 2||v]l e H"H(S(v))

we deduce that v € BV (U; R™), and recalling that v € SBV,.(U; R™) we conclude that v €
SBVP(U;R™). The previous discussion shows that SBVP?(U;R™) Cc GSBVP?(U;R™) and
GSBV?(U:R™)NL®(U; R™) = SBVP(U; R™)NL>(U; R™). As usual we set SBVP(U) :=
SBVP(U;R) and GSBVP?(U) := GSBVP(U;R).

The following proposition proves some basic properties of the space GSBVP(U;R™).
Note that the same properties do not hold for GSBV (U;R™) (see [4, Remark 4.27]).

Proposition 2.3. GSBVP(U;R™) is a vector space. A function u:= (ul,...,u™): U —
R™ belongs to GSBVP(U;R™) if and only if each component u® belongs to GSBVP(U).

Proof. Let u, v € GSBVP(U;R™) and let ¢ € C1(R™;R™) with supp(Vy) CC R™. We
have to prove that the function w := ¢(u + v) belongs to SBV,,.(U;R™). To this aim
we consider a function ¢; € CL(R™;R™) such that ¢1(2) = z for |2| < 1, and we define
or(2) = kpi(z/k). Then ¢ € CLHR™;R™), pr(z) = 2z for |z| < k, and |Vgi| < C for
some constant C' independent of k. Let wy 1= ¢(pr(u) + ¢r(v)). Since ¢r(u) and ¢k (v)
belong to SBVP(U;R™), the functions wy belong to SBVP(U;R™). As

Vg = Vo(er(u) + or(v)) [Ver(w) Vu + Vg (v) Vo],

the sequence Vwy, is bounded in LP(U;M™*"™). Moreover S(wy) C S(u) U S(v) and
lwilloo < [l@lloo < 4+00. Since wy, converges to w a.e. in U, from Theorem 2.2 we deduce
that w € SBVP(U;R™).

Let u := (u!,...,u™) be a function in GSBVP(U;R™), let i = 1,...,m, and let ¥ €
CY(R) with suppty’ CcC R. In order to prove that u’ € GSBVP(U) it is enough to show
that 9 (u’) belongs to SBV(U). Let 1 be a sequence in C(R™) such that || <
1, |[V¥k]leo < 1, and ¢(2) = 1 for |2| < k, and let v := (u')r(u). Then vy €

SBVP(U;R™), [lukllee < [¥]lse < +00, S(ux) C S(u), and
Vo = ¢ (u")hr (u) Vu' 4+ 9 (u”) Vi (u) Vau,
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so that Vuy, is bounded in LP(U;R™). Since v, — ¥(u’) a.e. in U, from Theorem 2.2 we
deduce that ¢ (u®) € SBVP(U).

Conversely, if all components u’ of u belong to GSBVP(U), then it is easy to see that
u'e; belongs to GSBVP(U;R™), e; being the i*" vector of the canonical basis of R™ so
that uw € GSBVP(U;R™) by the vector space property. O

From Proposition 2.3 and [4, Theorems 4.34 and 4.40] we obtain that S(u) is rectifiable
for every uw € GSBVP?(U;R™), and, if v, is a unit normal vector field on S(u), then for
H" la.e. x € S(u) there exist two distinct vectors u™(x), u=(z) € R™ such that
(

u (z)=aplim wu(y), u (z)= aplim wu(y), (2.2)

y—x,yeH () y—z,yeH~ (x)
where HY(z):={y €U :(y—x) -v,(z) >0} and H (z):={y €U : (y — z) - v,(z) < 0}.
We introduce now the notion of trace on the boundary in the GSBV? setting.

Proposition 2.4. If U has a Lipschitz boundary and v € GSBVP(U;R™), then there
exists a function 4: OU — R™ such that

aplim u(y) = a(x) (2.3)
y—z,yclU

for H* '-a.e. . € OU.

The H" !-a.e. defined function @: OU — R™ is called the trace of u on OU and in the
rest of the paper will be denoted simply by .

Proof of Proposition 2.4. Let us fix a bounded open set Uy containing U. Given u €
GSBVP(U;R™), let up be the function defined by ug :=w on U and ug := 0 on Uy \ U.
For every ¢ € CY(R™;R™), with supp(Vy) CC R™, we have p(u) € SBVP(U;R™).
Therefore p(ug) € SBVP(Up; R™) and we conclude that ug € GSBVP(Up; R™). By the
definition of S(ug), for every = € OU\S(up) we have
aplimug(y) = (),
y—x

which implies (2.3) with u4(z) := tg(x). We can choose a unit normal vector field v, on
S(up) which coincides with the outward unit normal to U H" !-a.e. on S(ug) NAU (see,
e.g., [4, Proposition 2.85]). Since in this case

Jim p™" L7 (Bp(w) N (H™ (2)AU)) =0

for H" '-a.e. x € S(ug) N AU, the second equality in (2.2) gives (2.3) with @(z) := ug (z).

For every ¢ > 1 we set GSBVP(U;R™) := GSBVP(U;R™) N LY(U;R™).

Lemma 2.5. Assume that U has a Lipschitz boundary and that w € GSBVP(U;R™) for
some q > 1. If S(u) = @, then u belongs to WHP(U;R™) N LI(U; R™).

Proof. Let ¢ € CL(R™;R™) be a function such that ¢(z) = 2z for |2| <1, and let px(z) :=
ko(z/k). Then o € CLR™;R™), pr(2) = z for |z| < k, and |Vy,| < C for some constant
C' independent of k. Under our assumptions on wu, the functions vy := @i(u) belong
to SBVP(U;R™) N L>°(U;R™) and S(vg) = . This implies that v, € WP (U,R™) N
L>°(U;R™). Since U has a Lipschitz boundary there exists a constant v > 0, depending
only on p, ¢, and U, such that [, < 7([Vuell, + ol for every k. As fon(2)] < Cl2]
for every z € R™ and every k, we have |lvg]|q < Cllu|lq. Since Vv, = Vi (u)Vu, we have
also ||Vog|l, < C||Vull,. Therefore vy is bounded in WP (U;R™). As vy, converges to u
pointwise a.e. on U, we conclude that v € WP (U; R™). O

In the spirit of Definition 2.1, we introduce the following notion of convergence.
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Definition 2.6. A sequence uy converges to u weakly in GSBVP?(U;R™) if and only if
ug, u belong to GSBVP(U;R™), ur — u a.e. in U, Vup — Vu weakly in LP(U;M™*"),
and H"~1(S(ug)) is bounded uniformly with respect to k.

It is immediate that weak convergence in SBVP(U;R™) implies weak convergence in
GSBVP(U;R™). The following compactness theorem for GSBVP(U;R™) is proved in [2,
Theorem 2.2] (see also [4, Section 4.5]).

Theorem 2.7. Let uy be a sequence in GSBVP(U;R™) such that ||ugll1, |Vukllp, and
H"1(S(uy)) are bounded uniformly with respect to k. Then there exists a subsequence
which converges weakly in GSBVP(U;R™).

We recall that a function W: M™*™ — R is said to be quasiconvex if
[ Wie+ Vela)) do = Wiee )
U

for every £ € M™*" and every ¢ € CL(U;R™). The following theorem collects the lower
semicontinuity results with respect to weak convergence in GSBVP(U;R™) that we shall
use in the rest of the paper.

Theorem 2.8. Let W: U x M™*"™ — R be a Carathéodory function satisfying
W(z,-) is quasiconvex on M"™*™ for every x € U, (2.4)
aol€|P —bo(z) < W(z,§) < ar[§]P + bi(x)  for every (x,§) € U x M™*™  (2.5)

for some constants ag > 0, a; > 0, and some nonnegative functions by, by € L*(U). Let
K: UxR™ — R be a lower semicontinuous function such that

)

k(z,-) is a norm on R™ for every x € U, (2.6
ri1lv| < k(z,v) < Kalv|  for every (z,v) € UxR"™ (2.7)
U;R™)

for some constants k1 > 0 and ko2 > 0. If uy converges to u weakly in GSBVP(
then for every H"~!-measurable set E, with H" 1(E) < 400, we have

)

/ Wz, Vu(z))dx < likminf/ Wz, Vug(x)) dx, (2.8)

U —eo Jy

/ k(z, vy (2)) dH™ 1 (2) < likm inf/ (2, v, (7)) dH™(2), (2.9)
S(u\E =00 J§(up)\E

where vy, and v, are unit normal vector fields on S(ux) and S(u), respectively.

Proof. If wy, converges to u weakly in SBVP(U;R™), inequality (2.8) is proved in [3] (see
also [4, Theorem 5.29]). The general case is proved in [20].

If E =, the proof of (2.9) can be found in [2, Theorem 3.7] when x does not depend
on x. The extension to the case of a general k can be obtained by standard localization
techniques. When E # @ is compact it is enough to replace U by U\ E. To prove (2.9)
in the general case let € > 0 and let K C E be a compact set such that H""1(E\K) < ¢.
Since S(u)\E C S(u)\K and S(up)\K C (S(ux)\E)U (E\K), we have

[ wemaanr i@ [ k) dn @) <
S(u\E

S(u)\K

k—oo

< lim inf/ K(2, vy, () dH™ () <
S(ur)\K

< lim inf/ (2, vy, (7)) dH™ () + ko H" ™ H(E\K) <
S(ur)\E

k—oo

< lim inf K (0, vy, (7)) dH™ () + Ko .
oo Js(u\E

As £ — 0 we obtain (2.9). O
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Remark 2.9. Let E be an H" !-measurable set with H"!(F) < +oco. Theorem 2.8
implies that, if u; converges to u weakly in GSBVP?(U;R™) and S(uz) C E for every k,
then S(u) C E.

Remark 2.10. Let I' be a rectifiable subset of U with H"~!}(I') < 40 and let E be an
H"~!-measurable set with H"~!(E) < +oo. Since (S(u)UI)\E = (S(u)\('UE))U(I'\E)
and (S(ux) UDN\E = (S(up)\(I'UE))U(I'\E), Theorem 2.8 implies that, if uj converges
to u weakly in GSBVP(U;R™), then

/ w(x,v(z)) dH" ! (z) < liminf k(z, vi(z)) dH"(z),
(S(w)UM\E k=00 J(S(ur)Ur)\E

where v and v, are unit normal vector fields on S(u) U I" and S(uy) U I', respectively.

3. FORMULATION OF THE PROBLEM

3.1. The reference configuration. Let ) be a bounded open set in R™ with Lipschitz
boundary 92, and let Qg be an open subset of Q with Lipschitz boundary. The set Q
represents the reference configuration of an elastic body with cracks, while Qg represents
its brittle part, in the sense that every crack in the reference configuration will be contained
in QB.

We fix a closed subset dn €2 of 0N, called the Neumann part of the boundary, on which we
will prescribe the boundary forces. On the Dirichlet part of the boundary dpQ := 0Q\OnQ
we will prescribe the boundary deformation, that will be attained only in the part of dp2
which is not contained in the crack. We fix also a closed subset dsQ of xS, which will

contain the support of all boundary forces applied to the body. We assume that
QpNogN=0. (3.1)
The reason for such a condition will be explained later (see Remark 3.6).

3.2. The cracks. A crack is represented in the reference configuration by a rectifiable set
I' C Qp with H"1(I') < +00. The collection of admissible cracks is given by

R(Qp) :={I': T is rectifiable, I' C Qp, H" Y(I') < 400} . (3.2)

The set I'NOp D is interpreted as the part of dp€) where the prescribed boundary deforma-
tion is not attained. On the contrary I' N9y will not produce any effect, since Qg N ONQ
is traction free by (3.1).

According to Griffith’s theory, we assume that the energy spent to produce the crack
I' € R(Qp) is given by

K(I) = / k(@ vr(2)) dH" () | (3.3)
M\oxQ

where v is a unit normal vector field on I and x: Qg xR™ — R is a lower semicontinuous
function, which takes into account the toughness of the material in different locations and
in different directions. Note that, since with our definition K(I') = K(I'\On(), there
is no energy associated with the part of the crack that lies on dn{2. Nevertheless for
mathematical convenience (see Section 5) it is sometimes useful to consider also cracks I'
with I'NONQ # @. As in Theorem 2.8, we assume that

#(z,-) is a norm on R for every z € Qp, (3.4)
k1lv| < k(x,v) < Kol for every (z,v) € QpxR™, (3.5

for some constants x1; > 0 and k9 > 0.
To simplifz the exposition of auxiliary results, we extend k to R"xR" by setting x(z,v):=
kelv] if © ¢ Qp, and we define K(I") by (3.3) for every rectifiable subset I' of R™. By (3.5)

we have

ki H" N (I\ONQ) < K(T) < ke H" NI\ ONQ) (3.6)



10 GIANNI DAL MASO, GILLES A. FRANCFORT, AND RODICA TOADER

for every rectifiable subset I' of R™.

3.3. The body deformations and their bulk energy. Given an admissible crack I,
an admissible deformation with crack I' will be any function v € GSBV(Q;R™) with
S(u) C I'. This implies that u has a representative @ which coincides with u a.e. on Q, is
defined at ‘H" !-a.e. point of Q\I', and is approximately continuous H" '-a.e. on Q\ I,
in the sense that
a(x) = aplim a(y)
y—m, y¢r

for H" '-a.e. z € Q\I'. Note that when m = n we are in the classical case of finite
elasticity on Q\I', and when m = 1 we are in the antiplane setting.

We assume that the uncracked part of the body is hyperelastic and that its bulk energy
relative to the deformation u € GSBV(2;R™) can be written as

/QW(:B, Vu(x))dz,

where W: Q x M™*"™ — R is a given Carathéodory function such that £ — W(x, &) is
quasiconvex and C!' on M™*" for every x € 2. As in Theorem 2.8, we assume that
there exist three constants p > 1, al/ > 0, a}¥ > 0, and two nonnegative functions b}’ ,
bV € LY(Q), such that

ag/ €7 — b (z) < W (=,€) < ai’ [P +bY (x) (3.7)

for every (x,&) € QxM™*™ . Since £ — W(x,&) is rank-one convex on M™*"™ for every
x € Q (see, e.g., [8]), we deduce from the previous inequalities an estimate for the partial
gradient O:W: Q x M™*" — M™*" of W with respect to ¢ (see, e.g., [8]). Specifically,
there exist a constant a}¥ > 0 and a nonnegative function by € L? (Q), with p’ = p/(p—1),
such that
0eW (2, 6)] < a3 [€P7 + by () (3.8)

for every (z,£) € QxM™*".

Note that in the case m = n the boundedness assumption (3.7) prohibits the introduction
of the “classical” constraint that W(£) — co as det£ — 0.

To shorten the notation we introduce the function W: LP(Q; M™*") — R defined by

W(®) 3:/QW($7®($)) dx (3.9)

for every ® € LP(Q;M™*"). By (3.7) and (3.8) the functional W is of class C' on
LP(Q; M™ ™) and its differential W : LP(; M™*") — LP' (Q; M™*™) is given by

(OW(D), T) = /Qagwcn, O(2))¥(z) da, (3.10)

for every ®, ¥ € LP(Q;M™*™), where (-,-) denotes the duality pairing between the spaces
LP' (€, M™*™) and LP(€; M™*7)

By (3.7) and (3.8) there exist six constants o’ > 0, oV > 0, oV > 0, g} > 0,
BYY >0, BYY >0 such that

a’[@F — B < W(®) < a¥[[@fIF + B, (3.11)
[(OW(@), U)| < (e3¥[| @[~ + BY)I1]l, . (3.12)

for every ®, ¥ € LP(Q; M™*").
If w e GSBV(Q;R™) is an admissible deformation for some crack I" and u has finite

bulk energy, then u belongs to GSBVP(Q;R™) by (3.7) and its bulk energy is given by
W(Vu).
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3.4. The body forces. We assume that at each time ¢t € [0,T] the applied body forces
depend on the deformation u and are conservative. This means that there exists a function
F: [0, T]xQ2xR™ — R such that the density of the applied body forces per unit volume in
the reference configuration is given by 9, F(t, z,u(x)), where 9, F (¢, x, z) denotes the partial
gradient of F with respect to z. We always assume that for every ¢ € [0,T] the function
(v,2) — F(t,x,2) is L"-measurable in z and C! in z.

Rather than imposing further regularity conditions on F', we prefer to impose appropriate
conditions on the associated work, corresponding to the deformation wu, given by

F(t)(u) = /QF(Lm,u(m)) dx . (3.13)

This is because only F(t) enters in the expression for the energy.

First of all we assume that there exists ¢ > 1 such that for every ¢ € [0,7] the function
F(t) is of class C* on L4(Q;R™), with differential dF(t): LI(Q;R™) — L7 (Q; R™) given
by

(OF () (u), v) = /Q 0. F(t,z,u(x)) v(z) d (3.14)

for every u, v € L(;R™), where (-,-) is the duality pairing between L7 (€;R™) and
Li(;R™), and ¢ := q¢/(¢ — 1). We assume also that
F(t)(u) > limsup F(¢)(ug) (3.15)
k—o0

whenever ug, u € LY(2; R™) and up — wu a.e. on 2. Notice that this inequality follows from
Fatou’s Lemma and from the continuity hypothesis on F', provided suitable upper bounds
are satisfied.

About the regularity in ¢ we assume that there exist a constant ¢ € [1, ¢) and, for a.e. t €
[0,T], a function F(¢): LI(;R™) — R of class C!, with differential OF(¢): LI(Q;R™) —
LY (Q;R™), ¢’ := /(4§ — 1), such that

F(t)(u) = F(0)(u) +/O F(s)(u)ds, (3.16)

(OF (t)(u),v) = (0F(0)(u),v) +/0 (0F(5)(u),v) ds (3.17)

for every u, v € L1(;R™) and for every t € [0,7]. In order for (3.16) and (3.17) to make
sense, we assume in addition that ¢ — F(¢)(u) and t — (OF(t)(u),v) are integrable on [0, T
for every u, v € LY(Q;R™). Of course, under these assumptions the functions ¢ — F(t)(u)
and t +— (OF(t)(u),v) are absolutely continuous on [0,7] for every u, v € L2(; R™), and
their time derivatives coincide a.e. with t — F(t)(u) and t +— (OF(t)(u),v), which justifies
the notation.

We also require some growth conditions on F(t), 8F(t), F(t), and dF(t) to pass to
the limit in our approximating sequences. To be explicit we assume that there exist six
constants o > 0, af >0, o >0, 35 >0, f{ >0, 87 > 0 and four nonnegative
functions o , of , B4, p7 € L'([0,T]) such that

af ulld — 55 < =F(t)(u) < of Julld+ 57, (3.18)
[(0F ) (w),v)] < (o [lullg™ + BT [lvll, » (3.19)
FO) ()] < of (@)llull§ + BT (), (3.20)
(OF () (u), 0)| < (af @)l + BT ()]l (3.21)
(3.19)

hold for every ¢ € [0,7].
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Remark 3.1. The conditions ¢ > 1 and of > 0 in (3.18) play a crucial role in our
results. From a mathematical viewpoint, they ensure that every sequence of deformations
with bounded total energy is bounded in L9(Q;R™). From a mechanical viewpoint, these
conditions ensure that, even if the cracks divide the body into several components, no part
of the body is sent to infinity by the applied forces. Unfortunately, they exclude the case
of a constant body force, which corresponds to a potential F' which is linear with respect
to z.

Remark 3.2. Let us explain the roles of the different exponents ¢ and ¢ in (3.18)—(3.21). By
(3.18) we obtain the exponent ¢ in (3.51), so that, when we apply the GSBV compactness
theorem to a sequence w; of functions with bounded energy, we obtain a subsequence
which converges pointwise a.e. on €2 and is bounded in L7(€; R™), but, in general, does not
converge strongly in L?(€2;R™). In some estimates we need to pass to the limit in sequences
like F(t)(ux), and this is made possible by (3.20), since ¢ < g and, therefore, u converges
strongly in L4(Q;R™).
Remark 3.3. All the conditions for F(t) and F(t) listed above are satisfied whenever it
is assumed that

for every (t,z) € [0, T|xR™ the function z — F(¢,x, z) is integrable on Q,  (3.22)

for every x € Q the function (¢, z) — F(t,x, z) belongs to C2([0, T]xR™), (3.23)
and that there exist seven constants ¢ > ¢ > 1, af > 0, af’ > 0, af > 0, af > 0,
af > 0 and five nonnegative functions b, bF € C°([0,T]; L*(R2)), b¥ e C°([0,T]; LI (Q)),
b e LY(Q), and bF € LY (Q) such that

ab'|z|? = b (t,x) < —F(t,z,2) < al'|z]9 4+ bl (¢, ), (3.24)
|0, F(t,x,2)| < al'|z|971 + b (¢, 2), (3.25)
|0:F (t, 2, 2)| < af|2|7 + bf (x), (3.26)
|0.0,F(t,x,2)| < al|z|971 + bL () (3.27)

for every (t,z,z) € [0, T|xQxR™, where 0; denotes the partial derivative with respect to ¢.
In this case (3.16) and (3.17) are satisfied with

f(t)(u) = /Q@tF(t,x,u(x)) dx , (3.28)

since for every u, v € L9(Q) the functions t — F(t)(u) and t — (3F(t)(u),v) are the
continuous time derivatives of the functions ¢ — F(t)(u) and ¢ — (OF(¢)(u),v). Weaker
hypotheses on F' will be considered in Section 9.

3.5. The surface forces. We assume that at each time ¢ € [0, T] the surface forces applied
on Jg{) depend on the deformation u, are conservative, and can be expressed by means
of a potential function G: [0,T]x9sQxR™ — R. More precisely, we assume that for a
given deformation u the density of the applied surface forces per unit area in the reference
configuration is given by 9,G(t,x,u(zx)), where 9,G(t,x,z) denotes the partial gradient of
G with respect to z. We assume also that for every ¢ € [0, T] the function (z,z) — G(¢,z,2)
is H"!-measurable in 2 and C' in z.

Remark 3.4. These assumptions are natural when the surface forces applied to the de-
formed body depend on a conservative field acting on a charge distribution which is de-
formed with the body, i.e., the charge density per unit area in the reference configuration
does not depend on the deformation. Indeed, in this case the change in the area elements
between the reference and the deformed configuration is compensated by the corresponding
change in the charge densities, so that the surface force applied to the deformed body has
a density per unit area in the reference configuration which depends on the position = and
on the deformation u(x), but not on the deformation gradient Vu(z).
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Unfortunately, pressure forces do not satisfy this assumption, so they cannot be treated
directly in the framework of this paper.

As we did for body forces, we will impose appropriate conditions on the associated work,
corresponding to the deformation w, which in this case is given by

G(t)(u) := G(t,z,u(z)) dH" (). (3.29)
952
First of all we assume that there exists r > 1 such that for every ¢t € [0,7] the function
G(t) is of class C' on L"(8sQ;R™), with differential 0G(t): L™ (s R™) — L™ (9sQ; R™)
given by
(G (t)(u),v) = 0.G(t,z,u(x)) v(z) dH" (x) (3.30)
950
for every u, v € L"(9sQ;R™), where (-, ) denotes the duality pairing between LT/((‘?SQ; R™)
and L"(0sQ2;R™), and 7/ := r/(r—1). If the exponent p which appears in (3.7) is less than
the dimension n of 2, we suppose that p <r <p(n—1)/(n—p). If p > n, we just suppose
that p <.
Let us fix an open set Qg C Q\Qp with Lipschitz boundary and such that dsQ C 9Qg.
Under our hypothesis on p and r the trace operator from W1P(Qg;R™) into L"(95Q;R™)
is compact (see, e.g., [22]). Therefore there exists a constant ys > 0 such that

[ullros0 < vs(IVullp.0s + [lullp.as) (3.31)

for every u € WHP(Qg; R™). Here and in the rest of the paper we use the same symbol to
denote a function defined on (a set containing) Qg and its trace on dg{2. In particular, if
u € GSBV(Q;R™) is a deformation with S(u) C Qp, W(Vu) < +oo, and F(t)(u) < +oo
for some ¢ € [0,7], then by (3.11) and (3.18) u € GSBVF(Q;R™) := GSBVP(Q;R™) N
LI R™) and S(u) N Qs = @, so that by Lemma 2.5 u € WHP(Qg; R™) N LI(Qg; R™).
Therefore (the trace of) u belongs to L"(9s€;R™) and G(¢)(u) is well defined.

As for the regularity in ¢ we assume that for a.e. ¢ € [0,7] there exists a function
G(t): L"(3sQ;R™) — R of class C!, with differential dG(t): L™ (g€ R™) — L™ (9sQ; R™),
such that

() (u) = G(0)(u) + /0 G(s)(u) ds (3.32)

(0G(t)(u), v) = (9G(0)(u), v) +/O (0G(s)(u),v) ds (3.33)

for every w, v € L"(0sQ;R™) and for every ¢ € [0,7]. In order for (3.32) and (3.33) to
make sense, we also assume that t — G(t)(u) and t — (9G(t)(u),v) are integrable on
[0,T] for every u,v € L"(0sQ;R™). This implies that the functions ¢ — G(¢)(u) and
t — (0G(t)(u),v) are absolutely continuous on [0,7] for every u, v € L"(9sQ; R™).

As we did for the body forces, we require some growth conditions on G(t), dG(t), G(t),
and G (t). To be explicit we assume that there exist six nonnegative constants ozg, a%,
o, ﬁog, (Y, 35 and four nonnegative functions ozg, oy, ﬁg , BY € L'([0,T]) such that

—ag [ullrose = 55 < =G(t)(u) < af [ull} 5.0 + 57 , (3.34)
(06 (t)(w), )| < (o5 [lull; 550 + B V] 050 - (3.35)
G() ()] < af (t)llull} o0q + 65 (t) (3.36)
(06 (1) (w), )| < (af (B)llull7 550 + BT ED12]050 (3.37)

for a.e. t € [0,T] and for every u, v € L"(9s§2; R™). By continuity (3.34) and (3.35) hold
for every ¢ € [0,7]. Note that in the first inequality of (3.34) the term ||ul|, 050 appears
with exponent 1. This is because in (3.51) we want a constant af > 0.
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Remark 3.5. All the conditions for G(t) and G(t) listed above are satisfied whenever it is
assumed that
for every (t,z) € [0, T]xR™ the function z+ G(t,x, z) is H" Lintegrable on 952, (3.38)
for every x € 95 the function (¢,2) — G(t,z, 2) belongs to C?([0, T]xR™), (3.39)
and that there exist four constants a? >0, ag >0, aga >0, a4G > 0 and six nonnegative
functions a§ , b5 € CO([0,T]; L™ (9s%)), b5, b € CO([0,T]; L1 (9sQ)), b§ € L1 (ds8), and
b$ € L™ (9sQ) such that

—a§ (t,2)|z] — b5 (t,2) < —G(t, 2, 2) < af|z|" + b (t, ), (3.40)
10.G(t,2,2)| < a§ |zt + b5 (t,2), (3.41)
|0:G(t,x,2)| < aS|z|" + b5 (z), (3.42)

10,0:G(t, 2, 2)| < af |z~ + b () (3.43)

for every (t,z,2) € [0,T]x0s2xR™, where J; denotes the partial derivative with respect
to t. As in Remark 3.3 we can prove that (3.32) and (3.33) are satisfied with

G(t)(u) == - G (t,z,u(z)) dH" (z). (3.44)

Weaker hypotheses on G will be considered in Section 9.

Remark 3.6. In this model Qp represents the reference configuration of the brittle part
of the material, while 2\Qp can be considered as the reference configuration of an elastic
unbreakable part attached to it through the interface 2NN p. Since W is not assumed to
be continuous with respect to x, it may happen that the bulk energy density is discontinuous
across 2N ONp, so that we can interpret Qp and Q\Qp as representing two bodies with
different material properties. In other words, in this model the surface forces can act on the
brittle body Qp only through the layer of unbreakable material Q\Qp. At the moment it
is not known what happens if the thickness of this layer tends to 0.

3.6. The prescribed boundary deformations. In this paper we do not consider the case
of imposed “discontinuous” boundary deformations, but only boundary deformations that
are traces on OpQ) of functions ¢ € WHP(Q;R™) N LI(Q;R™), so that there is always a
configuration with finite energy without cracks which satisfies the boundary conditions. The
choice of the exponents is determined by (3.11) and (3.18).

The set AD(¢, I') of admissible deformations in 2 with finite energy, corresponding to a
crack I' € R(Qp) and to a boundary deformation ¢ € WP (Q; R™) N LY(Q;R™), is defined
by

AD(,T) :={u € GSBVP({R™) : S(u) C I, u=1 H" “-ae. on dpQ\I'}, (3.45)

where the last equality in the previous formula refers to the traces of v and % on 9
introduced in Proposition 2.4.

Note that if I' is closed, then AD(3),I') coincides with the space of all functions u €
L1(Q;R™) whose distributional gradient on Q\I" belongs to LP(2\I'; M™*™) and which
agree with ¢ on dpQ\ ' in the standard sense of Sobolev spaces (to prove this fact we
can use Lemma 2.5 and [11, Lemma 2.3]). This space is frequently used in the variational
approach to nonlinear elasticity. Our “non-conventional” definition of AD(, I') stems from
the potential failure of the crack I' to remain closed in our existence theorem.

We assume that the boundary deformation v (t) depends on time and that the function
t +— (t) is absolutely continuous from [0,7] into W1P(Q;R™) N LY(;R™) (endowed
with the sum of the norms), so that the time derivative ¢ — v (t) belongs to the space
LY([0,T); WhP(Q; R™) N LI(Q;R™)) and its spatial gradient ¢ — V() belongs to the
space L1([0,T]; LP(Q; M™*™)).
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3.7. The admissible configurations and their total energy. An admissible configura-
tion is a pair (u, I'), where I" € R(€2p) is an admissible crack and v € GSBVP(Q;R™) is
a deformation with finite energy and with S(u) C I'.

Forevery t € [0,T], I' € R(Qp), and u € AD(3(t), I'), the total energy of the admissible
configuration (u, ") at time ¢ is given by

E)(u, T') :== E () (u) + K(I), (3.46)
where for every u € GSBVF(Q;R™) the elastic energy is defined by
El(t) (u) == W(Vu) — F(t)(u) — G(t)(u) . (3.47)

Note that u € WHP(Qg;R™) by Lemma 2.5, so that u € L"(9sQ, R™) and G(t)(u) is well
defined. We will sometimes write

EW)(u, ) := EM(u, I') — L(t)(u), (3.48)
where
EM(u,T') := W(Vu) + K(I') (3.49)
is the internal energy, while
L(t)(u) :== F(t)(u) + G(t)(u) (3.50)

is the work done by the applied loads.
There exist four constants o >0, af >0, 35 >0, and 37 > 0 such that
EN(t)(u) = af ([ Vullp + lullg) - 65, (3.51)
Et)(u) < af ([Vullp + llull + llully o50) + 55 (3.52)
for every t € [0,T] and for every u € GSBVP(;R™).

To prove this fact let us fix ¢ and u. By Lemma 2.5 we have u € W1?(Qg,R™), and by
(3.11), (3.18), and (3.34) we have

£ ) (w) = ag [Vully — B + o [lullf — 65 — oFlullrose — 57 - (3.53)

Since Qg has a Lipschitz boundary, there exists a constant kg > 0, depending only on p,
q, and Qg, such that

[ullp.0s < ks([[Vullpos + [[ullg,as) (3.54)
for every u € WHP(Qg; R™) N LI(Qg; R™).

Using Young’s inequality, it follows from (3.31) and (3.54) that there exists a constant

A >0, depending only on p, 7, q, &, of , ozg, and g, such that

g < O iup o+ S e 4+ 3.55
ag lullrose = ==~ Vulpa, + 5 lullga, + (3.55)

for every u € WhP(Qg;R™) N L4(Qs;R™). Therefore (3.51) follows from (3.53), with
of :==min{ica}”, 2al'}, and 85 =8} + 87 + 85 4+ \.
By (3.11), (3.18), and (3.34) we also have
el(t)(w) < ot Vullp + B + of [[ullg + 87 + o [[ull} os0 + 67 .

which gives (3.52) with of := max{a}¥,a,a¥} and g7 := 8V + pf + 9.
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3.8. Minimum energy configurations. For a given time ¢ € [0,7] and a given crack
I'(t) € R(Qp), a deformation u which corresponds to static equilibrium is a critical point
of the functional £¢(t) on the set AD(v(t), I'(t)) defined in (3.45). Among such critical
points, the minimum points of the problem

£ (t)(u) (3.56)

play an important role and can be regarded as the most stable equilibria. We will call them
minimum energy deformations at time ¢t with crack I'(t). The existence of these minimizers
is guaranteed by the following theorem, that will be proved in Section 5.

Theorem 3.7. For every t € [0,T] and every I'(t) € R(Qp) the minimum problem (3.56)
has a solution.

min
u€AD(p(t),I(t))

Let u(t) be a minimum energy deformation at time ¢ with crack I'(t) € R(Qp). For
every v € AD(0,I'(t)) and every € € R the function u(t) + ev belongs to AD(¢(t), I'(t)).
Therefore £°(t)(u(t)) < £ (t)(u(t) + ev) for every e € R. By taking the derivative with
respect to € at € = 0, we obtain the weak formulation of the Euler equation

(OW(Vu(t)), Vo) = (OF (t)(u(t)), v) +(9G(t)(u(t)), v) (3.57)
for every v € AD(0,I'(t)). The critical points of the functional £°(¢) on AD(w(t), '(t))
are, by definition, the solutions wu(t) € AD(y(t), I'(t)) of (3.57), which turns out to be
the equation of equilibrium with prescribed crack I'(¢), and coincides with the classical
equilibrium equation considered in nonlinear elasticity when I'(t) is closed.

If I'(t) € R(Qp) and u(t) € AD(¢(t),I'(t)) is a solution of (3.57), we introduce the
linear functional g(t) on GSBVF(Q;R™) defined by

(9(t), v) := (AW (Vu(l)), Vu) = (OF (t)(u(t)), v) — (0G(t) (u(t)), v) (3.58)
for every v € GSBVP(;R™). By the Euler equation we have (g(t),v1) = (g(t),ve) for
every vi, va € GSBVP(Q;R™) with S(v1) C I'(t), S(v2) C I'(t), and vy = vy H" *-a.e.
on OpQ\T'(t), since in this case v1 — vy € AD(0,I'(t)). In other words (g(t),v) depends

only on the trace of v on dpQ\I'(t), provided S(v) C I'(t).
Under suitable regularity assumptions we have

(g9(t),v) = / QW (Vu(t))vvdH™ (3.59)
PO\ (1)

where v is the outer unit normal to 92, so that g(¢) can be identified with the function
0 W (Vu(t))v defined on dpSN\I'(t), which represents the density per unit area of the surface
force acting on dpQ\I'(t) at time ¢.

Returning to the general case considered at the beginning, the expression (g(t),v) can
always be interpreted as the work done by the surface forces acting on dpQ\I'(t) at time ¢
under the deformation v.

In the spirit of Griffith’s theory, an equilibrium configuration at time t € [0,7] is an
admissible configuration (u(t), I'(t)) which is a “critical point”, in a sense that has not yet
been made mathematically precise, of the functional & (¢)(u, I') on the set of configurations
(u, ') with I' € R(Qp), I'(t) C I', and u € AD(y(t), ). Following [15], we will con-
sider only minimum energy configurations at time t, which are defined as the admissible
configurations (u(t), I'(t)), with I'(t) € R(Qp) and u(t) € AD(y(t), I'(t)), such that

E)(u(t), I'(t)) < E()(u, I')
for every I' € R(Qp), with I'(t) C I', and every u € AD(y(t),I"). These are regarded as
the most stable equilibrium configurations.

The following theorem, which will be proved in Section 5, ensures that for every ¢ € [0, T

and for every I'y € R(Qp) there exists at least a minimum energy configuration (u(t), I'(t))
such that Iy C I'(t).
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Theorem 3.8. Let t € [0,T] and let Ty € R(Qp). Then the minimum problem
min {Et)(u, ') : I' € R(QB), Iv C T', ue AD()(t), ') } (3.60)
has a solution.

3.9. Quasistatic evolution. An irreversible quasistatic evolution of minimum energy con-
figurations is a function ¢ +— (u(t), I'(t)) which satisfies the following conditions:

(a) static equilibrium: for every ¢ € [0,T] the pair (u(t),I'(t)) is a minimum energy
configuration at time ¢, i.e., I'(t) € R(Qp), u(t) € AD((t), I'(t)), and

E@)(u), I'(t)) < E@) (v, I')
for every I' € R(Qp), with I'(t) C I', and every v € AD(y(t), I');
(b) idrreversibility: I'(s) C I'(t) for 0 < s <t <T;

(¢) nondissipativity: the function t — E(t) := £(t)(u(t), I'(t)) is absolutely continuous
on [0,7] and its time derivative E(t) satisfies

E(t) = (g(t), & (1)) — F(t)(u(t)) — G(t)(u(t)) (3.61)
for a.e. t € [0,7T].

Remark 3.9. To explain why condition (c¢) can be interpreted as the conservation of energy
in this model, let us consider the very special case where I'(t) = Iy for every t € [0,T],
with Iy a closed set, and the function ¢ — w(t) is absolutely continuous from [0,7] into
WP (Q\Tp; R™)NLY(Q; R™) (endowed with the sum of the norms). Then the time derivative
t — 4(t) belongs to the space L([0, T]; WLP(Q\Ip; R™)NLI(Q;R™)). Since u(t) —(t) =0
H" '-a.e. on dpQ\ Iy for every t € [0,T], we obtain that u(t) — ¢(t) = 0 H" '-a.e. on
OpQ\ Iy for a.e. t € [0,T], so that u(t) — ¢(t) € AD(0,I}) for a.e. t € [0,T]. From the
Euler equation (3.57) and from (3.58) we obtain (g(t),a(t)) = (g(t),%(t)), so that (3.61)
yields

E(t) = {g(t),a(t)) — F(£)(u(t)) = G(t)(u(t)) (3.62)

for a.e. t € [0,T]. On the other hand, we have
FF @) (u(t)) = (OF (t)(ult)), a(t)) + F(#)(u(?)), (3.63)
FG(O)(u(t)) = (0G (1) (u(t)), (1)) + G (t)(u(t)) (3.64)

for a.e. t € [0,T]. This follows from our qualitative hypotheses on F, F, G, G, together
with the estimates given by (3.16), (3.17), (3.20), (3.21), (3.32), (3.33), (3.36), and (3.37).
Let
E™(t) := E™(ult), o) = E(t)(u(t), Io) + F(£)(u(t) + G(t) (u(t))
be the interior energy of the solution at time ¢. By (3.62), (3.63), and (3.64) we have

E™(t) = (g(t), a(t)) + (OF () (u(t)), a(t)) + (9G () (ult)), a(t)) ,

where the right hand side is the power of the exterior forces applied to the body at time ¢,
including the surface forces acting on 9pQ\ I (see (3.59)). Similar results can be obtained
under weaker regularity conditions on w(t) and I'(t).

Remark 3.10. If ¢ — (u(t), I'(t)) is an irreversible quasistatic evolution of minimum energy
configurations, so is t — (u(t), I'(t)\OnQ).

Remark 3.11. In the definition of quasistatic evolution we make no measurability assump-
tion on the function ¢ — u(t). However, the nondissipativity condition (c) implies that the
function t — (g(t),9¥(t)) — F(t)(u(t)) — G(t)(u(t)) is measurable and belongs to L'([0,T])
being the a.e. derivative of an absolutely continuous function.
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Given an initial admissible configuration (ug, I'y), we look for an irreversible quasistatic
evolution such that (u(0), I'(0)) = (uo, Io). From the definition it follows that (u(0), I"(0))
is a minimum energy configuration at time 0. Therefore a necessary condition for the
solvability of the initial value problem is that (ug,Ip) is a minimum energy configuration
at time 0, i.e., Iy € R(Qp), up € AD(¥(0), I}), and

£(0)(uo, I'o) < £(0)(u, I) (3.65)

for every I' € R(Qp), with Iy C I', and every u € AD(1(0),T").

The following remark shows that, if no forces are applied at time 0, then there are
minimum energy configurations at time 0 with an arbitrary crack I, provided that some
very weak additional conditions are satisfied.

Remark 3.12. Let m = n and let u;q(z) := = be the identical deformation, so that
Vu;q(x) is the identity matrix in M™*™. If ¢(0) = u;q and

W(z,&) > W(x, Vuq(x)),
F(0,2,2) < 0= F(0,z,u4(x)),
G(0,z,2) < 0=G(0,z,uq(z))

for every x € Q, z € R™, £ € M"*"™  then no force is applied to the body at time 0 and the
reference configuration wu;q belongs to AD(1(0),9) and is stress free. Moreover for every
admissible crack I' € R(€2p) the configuration (u;q, ") is a minimum energy configuration
at time 0.

The main result of this paper is the following theorem, which will be proved in Section 7.

Theorem 3.13. Let (uo, I'n) be a minimum energy configuration at time 0, i.e., assume
I'n € R(QB), up € AD(1)(0),Iy), and (3.65). Then there exists an irreversible quasistatic
evolution t — (u(t), I'(t)) with (u(0),'(0)) = (ug, [o)-

4. A FEW TOOLS

In this section we develop a few tools which will be very useful in the proof of Theo-
rem 3.13. Subsections 4.1 and 4.2 introduce a weak notion of set convergence, which plays
the role of Hausdorff convergence when no restriction is placed on either dimensionality or
connectedness. Hausdorfl convergence, which was instrumental in [9] and [7], can not be
used in the present setting for two reasons: first, H"~! is not lower semicontinuous with
respect to Hausdorff convergence; then, Hausdorff convergence does not imply convergence
of the associated minimum energy deformations.

Subsection 4.3 establishes the weak convergence of the stresses associated to the mini-
mum energy deformations, while Subsection 4.4 deals with a technical result concerning the
approximation of Bochner integrals with Riemann sums.

As in Section 2, let U be a bounded open set in R™ and let 1 < p < +00.

4.1. A convergence of sets. We introduce a notion of convergence of sets based on the
weak convergence in SBVP(U).

Definition 4.1. We say that Iy oP-converges to I' in U if Iy, I’ C U, H"‘l(Fk) is
bounded uniformly with respect to k, and the following conditions are satisfied:
(a) if u; converges weakly to u in SBVP(U) and S(u;) C I}, for some sequence
kj — oo, then S(u) C I';
(b) there exist a function u € SBVP(U) and a sequence uy converging to u weakly in
SBVP(U) such that S(u) = I' and S(ug) C I, for every k.
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Remark 4.2. The rectifiability of the oP-limit of any sequence of sets follows from the
rectifiability of S(u) for any u € SBVP(U).

It is clear from the definition that, if a sequence oP-converges, then every subsequence
oP-converges to the same limit. If Iy and I, oP-converge to I" and I”, respectively, then

I, C Iy forevery k = I'CI'.

Let us consider now the special case where I'y, = Iy for every k, with H"*~1(Iy) < +o00.
Then it is not always true that Iy oP-converges to Iy in U. Indeed, using Theorem 4.7
and Remark 2.9 we can prove that in this case Iy oP-converges to the set I' characterized
by the following properties:

(a) if v € SBVP(U) and S(v) C Iy, then S(v) C I';
(b) there exists a function u € SBVP(U) such that S(u) = I' C I.

Therefore I'y, oP-converges to Iy in U if and only if
there exists u € SBVP(U) with S(u) £ I . (4.1)

Note that (4.1) is not always true. For instance, if Iy is contained in a smooth manifold
M of dimension n — 1, then (4.1) implies that there exists u € WP(Q\ M) such that
Iy={xeM:u (z)#u"(x)}, where u~ and u™ are the traces of u on both sides of M.
If p > n, by the Sobolev embedding theorem u~ and u' are continuous on M, hence a
set Iy C M which satisfies (4.1) must be open. Using the notion of capacity associated to
WLP it is possible to prove that also in the case 1 < p < n there are sets Iy C M which
do not satisfy (4.1).

The following lower semicontinuity theorem is an easy consequence of Theorem 2.8.

Theorem 4.3. Let k be as in Theorem 2.8, let I'y,, I', and I'"" be rectifiable subsets of U
with H" (") < +o00, and let E be an H" ! -measurable set with H" 1 (E) < +o0. If I}
oP -converges to I' in U, then

/ k(z,v)dH™ ! < lim inf/ k(z,vp) dH™ 1,
(PUT")\E k—oo J(r,urH\E

where v and vy, are unit normal vector fields on I' U T and Iy U I, respectively.

Proof. By condition (b) there exist a function u € SBVP(U) and a sequence uy converging
to u weakly in SBVP(U) such that S(u) = I and S(ug) C I for every k. The conclusion
follows by applying Theorem 2.8 and Remark 2.10. O

Remark 4.4. Assume that Iy oP-converges to I, then
(a) H" Y(I') < 400 by Theorem 4.3;
(b) if further, K is compact and Iy, C K for every k, then I' C K by (b) of Defini-
tion 4.1, together with the fact that H"~1(S(u) \ K) < liminfy H" 1 (S(ux) \ K).

Lemma 4.5. Let I' C U be a set with H""Y(I') < +oo. If there exists a sequence u' €
SBVP(U)NL>®(U) such that I' = |J, S(u’), then there exists u € SBVP(U)NL>®(U) such
that S(u) = I'. Let I} be a sequence of subsets of U with H" 1(I'y) bounded uniformly
with respect to k. If, in addition to the previous hypotheses, each function u® is the weak
limit in SBVP(U) of a sequence uf with S(ul) C Iy for every k, then condition (b) of
Definition 4.1 is satisfied.

Proof. Suppose that there exists a sequence u’ € SBVP(U) N L°°(U) such that I' =
U; S(u?). It is not restrictive to assume that

lulle <1, IV, < 1. (4.2)
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Given a sequence of real numbers ¢; > 0, with ), ¢; < 400, we define

[eS) 4
U= E cu', ol = E cu'.
i=1 i=1

Since v’ € SBVP(U) N L*(U) and S(v*) € I', from Theorem 2.2 we obtain that u €
SBVP(U) N L>®(U) and v’ converges to u weakly in SBVP(U). By Remark 2.9 we have
S(u)CrI.

It remains to choose the sequence ¢; so that I' C S(u). First of all we fix a (Borel)
orientation of I' and for every v € SBVP(U) we define the jump of v on I' as [v] :=
vt —v™ € LYI',H"1). We define two sequences ¢; and e; inductively. We set ¢; = 1.
Suppose that ¢, and €y_; have already been defined. We choose ¢, such that 0 < e, < ey_1
(for £ =1 we require only 0 < &7 ) and

H"il({x € S(vz) : |[v£](m)| <ee}) < 27¢. (4.3)
To choose c¢y11, for every ¢ > 0 we consider the set
Ag = {x € () : [o](2) + c[u™](2) = 0},

as in the proof of [14, Lemma 3.1]. The family (Af),., is composed of pairwise disjoint
subsets of S(v’). As H" 1(S(v%)) < +oco, we have that H" (A% = 0 except for a
countable number of ¢. We choose ¢y, such that 0 < ¢p 1 < £,27¢"! and H"il(AZ )=

Ce41
0. Since S(v* + copru YU AL = S(0') USuT!), we have

S = S + coputh) 2 S U St
We deduce by induction that

for every £. Let

Ep:={x e S0 : | <&} and F,:=|]E;.
i=0
By (4.3) we have H"~!(E;) < 27¢, hence H"~1(F,) < 217,
Let us prove that
S(v*) € S(u) U E,. (4.5)
Indeed, if 2 € S(v)\ Ep, then |[v*](z)| > £¢. On the other hand, for H" '-a.e. € I' we

have
o0

[ul(@) = [ @) + > alul)(@),
i=0+1
hence -
@)z e~ | Y aful]@)]. (4.6)
i=0+1

Since |[u’](z)| < 1 for H" '-a.e. x € I' we have

‘ i cz[uz}(m)‘ < i c; < &y i 271 < gy,

i=0+1 i=0+1 i=0+1

and we deduce from (4.6) that [u](x) # 0, hence z € S(u) for H" !-ae. z € S(v*)\ E,.
We conclude that (4.5) is satisfied. By (4.4) and (4.5) we obtain that

k
S & Su)uF,
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for every k > ¢. Taking the union with respect to k we get I' C S(u) U Fy, which implies
HH(I'\S(u)) < 2'7¢. By the arbitrariness of ¢ we obtain I' C S(u).
Under the additional hypotheses of the second part of the lemma we may assume that

luille <1, [ Vuill, < 1. (4.7)

and we define
J4 (%)
0. Z i o Z i
Vg = Ciuy , U ‘= CiUuy -
i=1 i=1

Since vi, € SBVP(U) N L>(U) and S(vi) C I, from Theorem 2.2 we obtain that wuy €
SBVP(U)NL>®(U) and vi, converges to uy weakly in SBVP(U) as £ — oo and uy, converges
to u weakly in SBVP(U) as k — oo. By Remark 2.9 we have S(uy) C I, for every k. O

Proposition 4.6. Assume that Iy, oP -converges to I' in U and that ug converges to u
weakly in GSBVP(U;R™). If S(ug) C I}, for every k, then S(u) C I'.

Proof. Assume that S(uy) C I, for every k. Let 1; € C°(R™;R™) with ¢;(z) = z for
|z| < j. Then v;(us) converges to t;(u) weakly in SBVP(U;R™). Since S(t;(uy)) C
S(ux) C Iy, if we apply condition (a) of Definition 4.1 to each component we obtain
S(tp;(u)) C I'. The conclusion follows from the fact that S(u) = U; S(¥;(u)). O

4.2. Compactness properties. We now prove some compactness properties of the oP-
convergence.

Theorem 4.7. Every sequence Iy, C U, with H"~*(I'y) uniformly bounded, has a o -con-
vergent subsequence.

Proof. Let I'; be a sequence of subsets of U with H"~1(I;) < C < +oo for every k. Let
wp, be a sequence in L>°(U) with the following density property: for every w € L*°(U)
there exists a subsequence wy, which converges to w strongly in LP(U) and satisfies the
inequality ||wp,|lco < ||w|loo for every i. For every positive integers ¢, h, and k let uf;’h be
the solution of the following minimization problem

min{||Vul? + lllu — wy b : w € SBVP(U), S(u) C Ik} .
To prove the existence of a solution it is enough to apply Theorem 2.2 and Remark 2.9 to a
minimizing sequence; the uniqueness follows from the strict convexity of the functional. By
a truncation argument we obtain ||ui’hHOo < ||wp|loo - By Theorem 2.2 and by a diagonal

argument, passing to a subsequence, we may assume that ui’h converges weakly in SBVP(U)
to a function u®" € SBVP(U) as k — oo. Let

oo
I := U S(uby.
£,h=1
To prove that H" (I') < +o0, for every integer 7 > 0 we consider the sequence v} :=
(ui’h)lg,hgr and the function v" := (ue’h)lggyhgr. As v, converges to v” weakly in
SBVP(U;M"™ ") we have

T

HH Y S@™) =HPH(S(") < liminf H™H(S(vf)) =

k—oo
£,h=1

= liminf H"'( | J S(u;")) <liminf H"(I}) < C.
k—o0 thet k—o0
Passing to the limit as 7 — oo we obtain H"~}(I') < C.

We want to prove that Iy oP-converges to I'. By construction I satisfies all hypotheses
of Lemma 4.5, which implies that condition (b) of Definition 4.1 is satisfied.
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To prove condition (a) let v; be a sequence which converges weakly in SBV?(U) to
a function v, and with S(v;) C I, for some sequence k; — oo. We have to show that

S(v) C I'. By the density property of wy, there exists a subsequence wy,, which converges to
v in LP(U) and such that [[wp, [|eo < [[v]lee < +00. Let £; — oo such that £;[|wp,, —v||b — 0.
From the minimality of uih we obtain ||uf;gh

V)

0o < ||whi

0o < ||v]jeo and

b bl =, ;

p*

g < ||V’U]||£ +£i||'l}j — Wh

i

L;,hy
[V,
Passing to the limit as j — co we get ||u‘i"

||vu‘€i7hi

0o < ||v]jeo and

P fyfule e — w12 < M+ Gl — w,

b (4.8)

where M := sup, |[Vu;|2 < +oo. This inequality implies that Vu‘" is bounded in
LP(U;R™) uniformly with respect to i and that u‘"" —wj tends to 0 in LP(U). Since
wy, converge to v in LP(U), we conclude that u‘i""i converge to v in LP(U). We now
apply Remark 2.9 to the sequence u‘"# and conclude that S(v) C I. (]

We shall use the following extension of the compactness theorem, that can be proved by
adapting the arguments of Helly’s theorem.

Theorem 4.8. Let t — T (t) be a sequence of increasing set functions defined on an interval
I C R with values contained in U, i.e.,

Iy(s) C IL(t) C U for every s, t € I with s <t.

Assume that the measures H" '(I'y(t)) are bounded uniformly with respect to k and t.
Then there exist a subsequence Iy, and an increasing set function t — I'(t) on I such that

Iy, (t) oP-converges to I'(t) in U (4.9)
for every t € I.

Proof. Let D be a countable dense set in I. Using Theorem 4.7 and a diagonal argument
we can extract a subsequence I, such that Iy, (t) o?-converges to some set I'(t) in U for
every t € D. From Remark 4.2 we have I'(s) C I'(t) for every s, t € D with s < t. By
Theorem 4.3 the measures H"~!(I'(t)) are bounded uniformly with respect to ¢t € D. For
every t € I\ D we define

r-:= \|J res), rm= (] Ib).
s<t,s€D s>t,s€D

~

Then I'y(s) C I'_(t) C I'i(t) for every s, t € I\ D with s < t, and the measures
H"1(I'y(t)) are bounded uniformly with respect to ¢ € I\ D. This implies that the set
Dy :={teI\D:H" Y (I (t)\I'_(t)) > 0} is at most countable.

For every t € I\(D U D;) we define I'(t) := I'y(t) £ I'_(t). Given t € I\(D U D7), let
us prove that Iy, (t) oP-converges to I'(t). If u; converges weakly to u in SBVP?(U) and
S(ui) C Ty, (t) for some sequence j; — oo, then S(u;) C Iy, (s) for every s > t, s € D;
by oP-convergence, this implies S(u) C I'(s), and taking the intersection for s > ¢, s € D,
we obtain S(u) C I't(t) = I'(t), so that condition (a) of Definition 4.1 is satisfied.

To prove condition (b), we observe that for every s < ¢, s € D there exists a function
u(s) € SBVP(U) and a sequence ug(s) converging to u(s) weakly in SBV?(U) such that
S(u(s)) = I'(s) and S(ux(s)) C Ik, (s) C Ik, (t). Condition (b) of Definition 4.1 follows
now from Lemma 4.5.

Since the set D; is at most countable, using Theorem 4.7 and a diagonal argument it is
possible to extract a further subsequence, still denoted I, , such that Iy, (t) o”-converges
to some set I'(t) for every ¢t € D;. This concludes the proof of (4.9) for every t € I. The
monotonicity of ¢ — I'(t) on I follows from Remark 4.2. O
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4.3. Some results in measure theory. We begin with a lemma concerning perturbations
of bounded sequences in LP spaces.

Lemma 4.9. Let (X, A, p) be a finite measure space, let p > 1, let m,n > 1, and let
H: XxR"™ — R™ be a Carathéodory function. Assume that there exist a constant a > 0
and a nonnegative function b € L¥ (X), with p' =p/(p—1), such that

[H (2, )| < alefP™ + b(x) (4.10)
for every (x,€) € XxR™. Let @ and Uy, be two sequences in LP(X;R™). Assume that @y,
is bounded in LP(X;R™) and Uy converges to 0 strongly in LP(X;R™). Then
/ [H (z, ®k(z) + Vi (x)) — H(z, Pp(2))] ©(2) du(x) — 0 (4.11)
b's
for every ® € LP(X;R™).
Proof. There exists a constant C' > 0 such that
[Prll, <C and || @k + Wi, <C (4.12)

for every k. Let us fix ® € LP(X;R™). By the absolute continuity of the integral, for every
€ > 0 there exists § > 0 such that

Aec A u(Ad) <o = / |D(x)[Pdu(x) < €P. (4.13)
A
Let us fix M > 0 such that
2CP/MP < 9. (4.14)
For every z € X and 1 > 0 let
W(.I',TD = max{|H(x,§1) - H(:I;7§2)‘ : |€1| S M? |52| S M? ‘El - 52‘ S 77} . (415)

Since H is a Carathéodory function and satisfies (4.10), it turns out that w is a Carathéodory
function, w(z,0) =0, and

0 < w(z,n) < 2aMP~! 4 2b(x)

for every x € X and every n > 0. As WU, converges to 0 strongly in LP(X;R™) and
w(z,m) — 0 as n — 0, we have

[ le 9@ 9] duta) — 0. (4.16)

Let
Ap ={r € X 1 |Pp(x) + V()| > M} U{z € X : |Dk(z)| > M}, (4.17)
By :={z e X :|Pr(x)+ Vr(z)| < M}n{x e X :|Pr(x)] < M}. (4.18)

By (4.10) we have
\H (2, ®p(z) + Uy (2) — H(z, Pp(z))] < a|@p(z) + Vg (2)P + a|@p(z) P71 + 20(z) (4.19)
for every x € Aj,. By (4.15) and (4.18) we have
|H (2, @ (2) + Ui (2)) — H(z, Pk(2))] < wlz, |h(2)]) (4.20)
for every x € By,. Using the Holder inequality, from (4.19) and (4.20) we obtain

/X [H (2, @ (2) + Ui (2)) — H(z, Pk(2))]|@(2)| du(z) < (4.21)

<x(f p@rdu)” + [ o @) [900)] dia).

where K :=2(aCP~! + ||b]|,/).
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By Chebyshev’s inequality, (4.12) and (4.17) imply u(Ax) < 2CP/MP, and thus, by
(4.14), pu(Ag) < §. Therefore, from (4.13) and (4.21) we deduce that

/X (H (i, By () + Uy () — H(x, By ()] [B()] dp(r) <

<Kt /X W, |W(2)]) | @) dpu()

Taking (4.16) into account, we obtain (4.11) upon passing to the limit in the previous
inequality first as kK — oo and then as ¢ — 0. O

Remark 4.10. Let (X, A, 1) be a finite nonatomic measure space, let p > 1, let m, n > 1,
and let H: XxR"™ — R™ be a Carathéodory function. Assume that the function z +—
H(z,®(x)) ¥(z) is p-integrable for every ® € LP(X;R") and ¥ € LP(X;R™). Then,
the function z — H(z, ®(x)) belongs to L (X;R™) for every ® € LP(X;R"), and this
implies (4.10) by a classical result in the theory of integral operators (see [19, Theorem 2.3
in Chapter I}).

In particular, the conclusion of Lemma 4.9 still holds.

Let U and W be as in Theorem 2.8. Assume in addition that £ — W (x,§) belongs to
CL(M™ ") for every x € U. Since & — W (x,§) is rank-one convex on M™*" for every
x € U (see, e.g., [8]), from (2.5) we can deduce that there exist a constant az > 0 and a
nonnegative function by € L¥' (U) such that

|0eW (2, €)] < azl€[P~" + ba () (4.22)

for every (z,§) € UxM™*".
Let us consider the C! functional W: LP(U; M™*") — R defined by

/Wa:@

whose differential OW: LP(U; M™*™) — v (U;M™*™) is given by

ow@). 9 = [ oW (@ 0@)v () do.
for every @, ¥ € LP(U;M™*") where (-,-) denotes the duality pairing between the spaces
LV (U; M™*™) and LP(U; M™*").

Lemma 4.11. Assume that uy, converges to u weakly in GSBV?(U;R™) and that W(Vuyg,)
converges to W(Vu). Then OW(Vuy) converges to OW(Vu) weakly in LP' (U; M™*™)

Proof. Tt is enough to prove that
(OW(Vu),¥) < likm inf (OW(Vuy), ¥) (4.23)

for every ¥ € LP(U;M™*"™). Let 1; be a sequence of positive numbers converging to 0.
If we apply the lower semicontinuity theorem for GSBV (Theorem 2.8) to the function
W (z,& +n;9(x)), for every i we obtain

W(Vu+ ;%) — W(Vu) W(Vug +1n,9) — W(Vuyg) .

< lim inf (4.24)
Up k—oo Up
Therefore there exists an increasing sequence of integers k; such that
W(VU + 771'\1’) — W(Vu) _ 1 S W(Vuk + 771'\1/) - W(Vuk) (425)
i ? i
for every k > k;. Defining ¢ :=n; for k; < k < k;y1, from (4.25) we obtain
) — ) —
lmint YA W) ZWEVY) e W+ e ¥) = W) (4.26)

k—o0 €k k—o0 Ek
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Since W is of class C* on LP(U;M™*"), we have
W(Vu + &%) — W(Vu)

(OW(Vu), T) = lim (4.27)
k—o0 €k
and
U) —
M“V“k+5i) WV oy (Vg + 700, ) (4.28)
k
for suitable constants 74 € [0,¢]. By (4.22) and by Lemma 4.9 we have
likm inf (OW(Vuy, + 7, 0), ¥) = likm inf (OW(Vuyg), ). (4.29)
Inequality (4.23) follows now from (4.26)—(4.29). O

If W is strictly convex, using [24, Theorem 2] one can prove that Vu; converges in
measure to Vu on U. By (4.22) this implies that OW(Vuy) converges to OW(Vu) weakly
in LV (U; M™*™). We refer to [6] for similar results with p = 1.

4.4. Approximation by Riemann sums. We now prove a lemma concerning the approxi-
mation of Lebesgue integrals by Riemann sums. The convergence result (4.34) is well-known
(see [17]). For the application we have in mind we need the stronger result (4.33), that is
related to the Saks-Henstock lemma (see [23] and [18]) used in the theory of Henstock-
Kurzweil integral (see, e.g., [21]). We prefer to present an independent proof, based on [12,
page 63], which only uses Fubini’s theorem.

Lemma 4.12. Let [a,b] be a closed bounded interval, let X be a Banach space, and let
f:la,b] — X be a Bochner integrable function. Then there exists a sequence of subdivisions
(t8)o<i<i, of the interval [a,b], with

a=1t) <th <. <Pl <tF =0, (4.30)

1 =1y
kli)rr;o lr<nlzi)§k(t t, ") =0, (4.31)

such that
ik tz
1m1§:/)|ﬁt’ f)|ldt =0. (4.32)

In particular we have

> e -ahrw - [ swa] — o, (43)
i=1 b,

ik b

Z(ﬁC -t D) — / f(t)dt strongly in X (4.34)

i=1
as k — 0.

Proof. We extend f to 0 outside [a,b]. Set, for every m > 1 and i € Z, 7., :=i/m. For
every s € [0,1] we have

[ st - sl =

i€Z st !

—Z/"‘ F(s 4+ 7) = F(s + 7 =) dr.

€L
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Note that there are at most m(b — a + 1) + 2 non-zero elements in the above sums, namely
those with ¢ € I, :={i € Z : m(a — 1) < i < mb+ 1}. Integrating with respect to s we
obtain

/Z/ ||f3+T) Fo)ldt] ds <

1€EZL st

+oo ,
z;:/ / I1f(s+70) — (s+7}n—7)|\d5} dr = (4.35)
Z/ / 1£(s) = f(s = 7)ll ds| dr .

i€l

By continuity of the translations, for every € > 0 there exists § > 0 such that

“+o0
[ 1£(s) — fls — )l ds < e (4.36)

for 0 < 7 < §. Thus, from (4 35) and (4 36) we obtain
lim Z/ (s ) - (t)udt}ds:o.
m—eoe icZ it
Therefore there exists a sequence mk — oo such that
lim Z/ “Uf(s £ ) — f@)dt =0 (4.37)
P

for a.e. s € [0,1]. Let us fix s € [0, 1] such that (4.37) holds. Let py be the largest integer

i such that s+ 7/ < a, and let o) be the smallest integer ¢ such that s+ 7. > b, and
let ix == ok — pg. For i =1,... i — 1 we define t}C = s+ T{.jfk‘*“ and we set to := a and

ti¥ :=b. Then (4.30) and (4.31) are satisfied. Moreover

Z/ I1f(t) — f)lldt =
or—1

- > / (s + ) — FOl de + (1.38)

i=pr+2 +Tmlc

+ / 1 Fax) — F(6)] di + / 1F(B) — F(0)] dt

where a := s+ Tp’“+1 and by 1= s+ Tk L. Since all integers between pr+2 and o — 1
belong to I, , the “first term in the right hand side of (4.38) tends to 0 by (4.37). The
second term is estimated by

ak S-‘:—‘ankk+
st soar< [ gttt - s

which also tends to 0 by (4.37). The third term tends to 0 by the absolute continuity of the
integral, since b — by, tends to 0 by the choice of o). This concludes the proof of (4.32). O

Remark 4.13. If X; is a sequence of Banach spaces and f;: [a,b] — X is a sequence
of Bochner integrable function, then there exists a sequence of subdivisions (})o<i<i,
independent of j and satisfying (4.30) and (4.31), such that (4.32) is satisfied simultaneously
for each function f;. Indeed, we can consider the Banach space X of all sequences x :=
(zj) such that x; € X; for every j and }_;[lzjllx, < +oo, endowed with the norm
[#llx == >, llzjllx, . To obtain the result it is enough to apply Lemma 4.12 to the function
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g: [a,b] — X whose components g; are given by g;(t) := 279 f;(¢)/| f;ll1, where || ;|1 =
b
S 155@®)lx; dt.

5. PRELIMINARY RESULTS

We now return to the framework described in Section 3 and adapt to it the tools de-
veloped in Section 4. Moreover, we extend the jump transfer results of [14] to the space
GSBV(Q;R™), and use them to prove the stability of minimum energy configurations (see
Subsection 3.8).

5.1. Jump transfer. To deal with the interaction between cracks and boundary defor-
mations it is convenient to extend all deformations to a bounded open set {2y, containing
Q and with Lipschitz boundary. When we speak of oP-convergence we always refer to
oP -convergence in Q.

For every rectifiable set I' C R™ we define

rY.=ruoyQ. (5.1)
From (3.3) we obtain that
Ky =K(r) (5.2)
for every rectifiable set I' C R™. Theorem 4.3 implies that
K(rur’< likrrigif K(IyuI") (5.3)

whenever Iy, I', and I" are rectifiable sets in Q, I, oP-converges to I', and H" 1 (I") <
+00.
From [14, Theorem 2.1] we shall obtain the following result.

Theorem 5.1 (Jump transfer in SBV). Assume that I, € R(Qp) and that I oP -con-
verges to I'. Then for every function v € SBVP(Qo;R™) there exists a sequence vy, €
SBVP(Qy; R™) such that

(a) vk =v a.e. in Q\Qp,

(b) vy — v strongly in L'(Q; R™),

(¢) Vv — Vo strongly in LP(; M™*™),

(@) H* (SN (S @)\ ) — 0.

If, in addition, v € L>(Qp; R™), then we may assume that vy is bounded in L*°(Qg; R™).

To prove Theorem 5.1 we need the following lemma.

Lemma 5.2. Assume that 'y € R(Qg) and that TN oP -converges to I'. Then there exist
a function w € SBVP(g) and a sequence wy converging to w weakly in SBVP(Qg) such
that S(w) = I'\OnQ and S(wy) C Iy for every k.

Proof. Let ¢; € C®(R™) with ¢;(z) = 1 if dist(z,0nQ) > 1/i, and @;(z) = 0 in a
neighbourhood of dn€. From condition (b) in Definition 4.1 there exist a function v €
SBVP(Qp) and a sequence vy converging to v weakly in SBVP?(€) such that S(v) = I

and S(vy) C I for every k. Let v' := ;v and vl := @;vp. Then v} converges to
v' weakly in SBVP(Qy), S(vi) C I, and I'\OnQ = |, S(v%). As H" (') < 400 by
Remark 4.4-(a), the conclusion follows from Lemma 4.5. O

Proof of Theorem 5.1. By assumption we have I'}YY C QpUANSQ for every k. As QpUANS is
closed, we deduce that I' C QpUdN . By Lemma 5.2 there exist a function w € SBVP()
and a sequence wy, converging to w weakly in SBVP(Qq) such that S(w) = I'\ONQ C Qp
and S(wy) C I, C Qp for every k. Let us fix v = (vl,...,0™) € SBVP(Qo; R™). If we
apply [14, Theorem 2.1] to each component v¢ of v, with Q = Qp, Q' = Qq, ux = wi, and
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u = w, we construct a sequence vy = (v}, ..., v") € SBVP(Qp; R™) which satisfies (a), (b),
(¢), and _ _
H* (S () \S(wr)\ (S () \S(w))) — 0

for i =1,...,m. By monotonicity this implies
H (SR \T)\ (S ()N (I'\On ) — 0.
As (SW\TEONS@ONTY) T (S(Wp)\Te)\(S(W)\(I'\9nQ)), we obtain
H (SN (S@H\TY)) — 0. (5-4)
Since S(vx) = J; S(vi) and S(v) = J; S(v'), we have

(SNTENSENY) E J(SENTNNEENTY)),
i=1
so that (d) follows from (5.4).
If, in addition, v € L (Qp; R™), we can replace vy by ¢(vi), where ¢ € C3(R™;R™)
satisfies ¢(z) = z for |z| < ||v|leo. The new sequence ¢(vy) is bounded in L>(Qg; R™) and
continues to satisfy (a)—(d). O

The following theorem extends the result of Theorem 5.1 to the case of GSBV functions.

Theorem 5.3 (Jump transfer in GSBV). Assume that Iy € R(Qp) and that T oP-
converges to I'. Then for every function v € GSBqu(QO;Rm) there exists a sequence
v, € GSBVP(Qo; R™) such that

(a) vg =v ae in Q\Qp,

(b) v — v strongly in Li(Qp; R™),

(¢) Vv — Vo strongly in LP(Qq; M™*™),

(d) H (S )\ T\ (S@N\TY)) — 0.

Proof. Since ©\Qp has a Lipschitz boundary, by Proposition 2.4 for H" '-a.e. x € 0Qp
there exists 0p(z) € R™ such that

op(z) = aplim o(y). (5.5)
y—z, y¢Qp
For every integer ¢ > 1 let
Si:={x € 00p : |vg(x)] >i}. (5.6)
Then
H"(S;) — 0. (5.7)

Let ¢ € CH(R™;R™) be a function such that ¢(z) = 2z for |z| < 1, and let ¢;(2) =
ip(z/i). Then ¢; € CHR™;R™), p;(z) = z for |z| < i, and |Vp;| < C for some con-
stant independent of i. Since v € GSBVP(Q;R™), the functions v’ := ;(v) belong to
SBVP(Q(],Rm) n LOO(Qo,Rm) .

By Theorem 5.1 for every i there exists a sequence vi € SBVP(Q; R™) such that v} = v’
a.e. in Qp\Qp, v,i — v® strongly in L(Q; R™), Vv,iC — Vo' strongly in LP(Qo; M™*") |
and H* L((S()\ TN\ (S(WH)\I'VN)) — 0. Therefore there exists an increasing sequence of
integers k; such that

[vg, —v'llq < 1/ (5.8)
Vvl — Vui||, < 1/i (5.9)
H (SN S I\TY)) < 1/i (5.10)

for every k > k;.
For k; < k < ki1 define vy := v,i a.e. on Qp, and vg := v ae. on Q\Qp. Then
v, € GSBVP(Q0;R™) and condition (a) is satisfied.
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As |pi(2)] < C|z| for every i and z, the sequence v* converges to v in L7(£2y;R™).
Since Vo' = V;(v)Vv, the sequence Vov' converges to Vv strongly in LP(Qq; M™*™).
Therefore (b) and (c) follow from (5.8) and (5.9).

For k; <k < kit1 let x € 9Qp\(S(vi)US;) such that (5.5) holds. As z € 9Qp\S;, it is
easy to deduce from (5.5) that

tp(z) = aplim o'(y) = aplim wvi(y). (5.11)

y—z, y¢Qp y—z, y¢Qp
Since = ¢ S(v}), the approximate limit of v} at x exists, so that we must have

Op(x):= aplim vi(y). (5.12)

y—x, yeﬁB
By the definition of vy, from (5.5) and (5.12) we deduce that
Op(z) = aplimvg(y),
y—x

hence = ¢ S(vg).

This shows that 9Qp\(S(v)US;) C 00p\S(vk), which implies S(vg) NONE C (S(vi)N
ONp)US;. Since S(vy)NQp = S(vi)NQ s, we conclude that S(v,)NQp C (S(vi)NQE)US,.
Recalling that S(v?) C S(v), we obtain

(S NN S@NTINQE E [(SN\LONS@NTM))US]NQs. (5.13)

On the other hand, S(v;)\Qp € S()\Qp and I'N\Qp = OvQ\Qp = I'N\Qp by

Remark 4.4-(b), so that
[(S)\TENS@N\TY)\QE = 0. (5.14)
From (5.13) and (5.14) we deduce that

S\ S@\IY) E (SN SN U S;
for k; < k < k;y1. Therefore (d) follows from (5.7) and (5.10). O

Remark 5.4. Condition (d) of Theorem 5.3, together with (3.3) and (3.5), implies that
Tim K((S\ TN S@NTY) =0,

hence

limsup K(S(vi)\ I ) < K(S(v)\T'N).

k—o0

5.2. Convergence of minima. We begin by proving the existence Theorems 3.7 and 3.8.

Proof of Theorem 8.7. Let us fix t € [0,T], let us extend ¢(t) to a function y(t) €
WP (Qo; R™) N L9(Q; R™), and let uj, be a minimizing sequence of problem (3.56). We
extend also ux to Qg by setting ug := o (t) a.e. on Qp\Q. The extended functions belong
to GSBVP(Q0; R™) and satisfy S(uy) C I'(t)N by Proposition 2.4 and by the definition of
S(ug). Since £(¢)(¥(t)) < +oo by (3.52), the infimum in (3.56) is finite. By (3.51) there
exists a constant C > 0 such that

IVurllp.a, + luklga, <C (5.15)

for every k. By Theorem 2.7 there exists a subsequence, still denoted wuy, which converges
weakly in GSBVP(y; R™) to a function u. Since u = 1 (t) a.e. on Qo\Q and S(u) & I'(t)V
by Remark 2.9, we conclude that w € AD(¢(t), '(t)).

By (2.8) in Theorem 2.8 we have

W(Vu) < likm inf W(Vuyg) . (5.16)

By Lemma 2.5 the functions uy and u belong to WP (Qg; R™)NLY(Qg; R™). By (3.54)
and (5.15) the sequence uy, is bounded in WP(Qg;R™), so it converges to u weakly in
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WP (Qg;R™). From the compactness of the trace operator we deduce that uy converges to
u strongly in L"(9s€; R™), and by the continuity of G(t) we get

G(t)(w) = lim G(t)(us). (5.17)
From (3.15), (5.16), and (5.17) we obtain
ENt)(u) < lim inf E°(t) (ug,) -

Since uw € AD(3(t), I'(t)) and uy is a minimizing sequence, we conclude that « is a minimum
point of (3.56). O

Proof of Theorem 3.8. Let us fix t € [0,7] and Iy € R(Qp), and let (uy, %) be a mini-
mizing sequence of problem (3.60) with Iy C I'y C Qp for every k. We extend uy to Qo by
setting uy, := 1o (t) a.e. on Q\Q, where () is the function introduced at the beginning of
the proof of Theorem 3.7. Note that these extensions belong to GSBVP(€; R™) and satisfy
S(ux) C I'N by Proposition 2.4 and by the definition of S(uy). Since E(t)(1(t), Io) < 400
by (3.52), the infimum in (3.60) is finite. By (3.6) and (3.51) there exists a constant C > 0
such that
IVurly q, + luxll g, + H*HIY) < C (5.18)

for every k. By Theorem 2.7 there exists a subsequence, still denoted by uy , which converges
weakly in GSBVP(2;R™) to a function u which satisfies u = 1o(t) a.e. on Qp\Q.

By Theorem 4.7 there exists a subsequence, still denoted I, such that I év oP -converges
to a set I'*. Since F,ﬁv C QpUINQ and OnQ is closed, we deduce, thanks to Remark 4.4-
(b), that I'* C Qp UdnQ. By Proposition 4.6 we have S(u) C I'*. Since u = (t) a.e.
on 20\ we deduce that the traces of u and (t) coincide H" '-a.e. on 9Q\I'*. Let
I':=T*\OnQ. Then I' € R(Qp) and u € AD(1)(t), '), because OpQ\I' = dpQ\T'*.

Arguing as in the proof of Theorem 3.7 we obtain (5.16) and (5.17). By (5.2) and (5.3)

we have also

P800

K(I'U Iy) = K(I'" U Ip) < lim inf Ky ur) = lim inf (7). (5.19)

By (3.15), (5.16), (5.17), and (5.19) we have
E(t)(u, ru F()) < likminfg(t)(uk, Iy).
Since I'U Ty € R(Qp) and u € AD(¢(t), ' UT}), our assumption on (ug, I) implies that
(u, I' U Tp) is a minimum point of (3.60). O
We now prove the stability of minimizers with respect to the o”-convergence.

Theorem 5.5. Let t;, € [0,T] and Iy € R(Qp). Assume that tj, — to and I’,ﬁv oP-
converges to 'Y, and define I'n, := I'’ \ONQ. For every k let u, € AD((ty), k) be a
function such that

E(tr) (ug, I) < E(tx) (v, I) (5.20)
for every I' € R(Qp), with I'y C I', and every v € AD(¢(tx), ). Then 'y, € R(QB) and
there exist a subsequence of uy, not relabelled, and a function us € AD(Y(tso), I'so) Such
that

Up — Uoo weakly in GSBVP(;R™) (5.21)
Up — Uoo weakly in LI(R™), (5.22)
Uk — Uso Strongly in LI(Q;R™), (5.23)

Ug — Uso Strongly in L" (g R™) (5.24)
Vug — Vs weakly in LP(Q;M™*™) . (5.25)
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Moreover
E(too) (Uoos Too) < Eltoo) (v, T) (5.26)
for every I' € R(Qp), with I'so C I', and every v € AD(Y(ts), I'). Finally
W(Vug) = W(Vu) , (5.27)
F(te) (ur) = F(too)(uos) , (5.28)
G(tr)(ur) — G(too)(teo) - (5.29)

Proof. Taking I' := I', and v = (k) in (5.20) we obtain

E(tr) (un, Ti) < E(tx) (Y (tr), Ik) -
By (3.6) and (3.52) we have

Etw) (W(tk), T) < of (IVeER) 15 + 9 E)E + 19(E) 17 050) + m2H" T (Tk) + BT,

so that &(tg)(ug, I;) is bounded uniformly with respect to k (recall that H" () is
bounded by the definition of the o?-convergence). By (3.6) and (3.51) there exists a constant
C > 0 such that

IVurllp + lluellf +H"~H(Ik) < C (5.30)

for every k.

Using an extension operator it is possible to construct an absolutely continuous function
t — o(t) from [0,7] into WLP(Qg; R™) N LI(Qg; R™) such that 1o(t) = 9(t) a.e. in
Q for every t. Then we extend uj to Qy by setting wug := 1o(tx) a.e. on Qp\Q. The
extended functions belong to GSBVP(Qp; R™) and satisfy S(ux) C I'N by Proposition 2.4
and by the definition of S(ux). By (5.30) and by Theorem 2.7 there exists a subsequence,
still denoted by wu, which converges to a function ue weakly in GSBVP(Qy;R™) and
weakly in L9(0;R™). Since 1)(tx) converges to 1(tso) in WHP(Qg; R™) we conclude
that us = 1o(tao) a.e. on Qo\Q. By Proposition 4.6 we have S(us,) C I'%, hence the
traces of us and ¥(ts) agree H" '-a.e. on ON\I'% .

Since F,év C QpUOINQ and OnQ is closed, we deduce that ', C Qg UINQ and by Re-
mark 4.4-(a) we have H"~1(I'%) < +o0, therefore I'n, € R(Q2p) and us, € AD(Y(too), I'so)
because OpQ\I'ne = OpQ\TL .

Properties (5.21) and (5.22) have already been proved, and (5.25) is a consequence of
(5.21). Since ¢ < ¢, property (5.23) follows from the fact that wuy converges to us pointwise
a.e. on 2, and that uy is bounded in LI(Q;R™) by (5.22).

By Lemma 2.5 the functions wuj and ue belong to WP(Qg;R™) N LI(Qg;R™). By
(3.54) and (5.30) the sequence wuy, is bounded in WP (Qg;R™), so it converges to s
weakly in W1P(Qg;R™). Property (5.24) follows from the fact that the trace operator is
compact from W1P(Qg;R™) into L"(9sQ;R™).

To prove (5.26), we fix I' € R(Qp) with ', C I'. Given v € AD(¥(t), I'), we extend
v by setting v := ¥g(ts) a.e. on 2o\, and define w := v — 1y (ts) a.e. on Q.

Since (I',)Y = 'V by the Jump Transfer Theorem 5.3 there exists a sequence wy €
GSBV}(Q0;R™) such that wy = w a.e. in Qo\Qp, wry — w strongly in LI(Qo; R™),
Vwy, — Vw strongly in LP(Qo; M™*™) | H* 1 ((S(wie) \Y NS (w)\'X)) — 0, and S(wy) C
ﬁB U onQ.

Let vg := wi + ¥o(t). Then vy, € GSBVP(Qo;R™), vp = to(tr) a.e. in Qo\Q,
v, — v strongly in L(Qo; R™), Vv — Vo strongly in LP(Q0; M™*™), H™ 1 ((S(v) \ T\
(S)\I'Y)) — 0, and S(vx) C Qp UINQ. By Lemma 2.5 the functions v, and v belong
to WHP(Qg;R™) and by (3.54) vy converges to v strongly in W1P(Qg; R™). We conclude
by (3.31) that v converges to v strongly in L"(9s; R™).

Let I := I, U (S(vk)\OnS). As S(vr)\OnS C Qp\ONQ, we have I € R(Qp). Since
S(vg)NQ C I}, S(vk) NOpQ C I, and vy = o(tx) a.e. on Q\Q, by Proposition 2.4 and
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by the definition of S(vx) we have vy € AD(¢)(tx), I'},). By the minimality condition (5.20)
we have
W(NVug) + K(Ik) = F () (ur) = Gt) (ur) <
SW(Vog) + K(I7) = F(tr) (k) = Gtx) (0r) ,
which implies
W(Vuy) — F (i) (un) — G(te) (ur) < (5.31)
< W(Vor) + K(S (i) \IY) = F(t) (vr) — G(tr) (vr) -
By (2.8) in Theorem 2.8 we have
W(Vue) < liknigf W(Vuy) . (5.32)

Since Vuy, converges to Vv strongly in LP(Qo; M™*™) | by the continuity of W we have
W(Vu) = klim W(Vuy) . (5.33)

By (3.16) and (3.20) we have
tr

[ F () (ur) = F (too) (ur)] S/tklf(S)(Uk)ldSS/ (o (s)l|urllF + 85 () ds, (5.34)

oo teo

tr

Ft) ) = Flt)@)| < [ 1FG @I < [ ef @l + A () ds. (535)

oo tOQ
As uy converges to us, strongly in L(Q;R™) by (5.23), using (3.15) and (5.34) we obtain
Ftoo)(Uoo) > limsup F(teo)(ur) = limsup F(tx)(ug) - (5.36)
k—o0 k—o0
As F(tso) is continuous in L7(2;R™) and vy, converges to v strongly in L7(£2; R™), using
(5.35) we obtain

Fltoe)(v) = Jim Flt)(og) = lim F(ti) (). (537)
In the same way we prove that
Gltoo)(too) = lim sup G(toc ) (ux) = limsup G(tx)(ur), (5.38)
Gltoe)(v) = Jim G(toc)(vx) = Jim G(te)(vg). (5.39)
From (5.32), (5.36), and (5.38) we obtain
W(Vitioo) = F(too) (tioo) = G(too) (too) < (5.40)

From Remark 5.4, and from (5.33), (5.37), and (5.39) we obtain
lim sup [W(Vvk) + K(S(vk)\FéV) — F(tg)(vk) — Q(tk)(vk)} < (5.41)

k—o0

< W(V) + K(SW)\I'Y) = Fltoo) (v) = Gltoo)(v).-

By (5.31), (5.40), and (5.41) we have
W(Vitoo) = F(too) (t) — Gltoc) (t1n0) < (5.42)

< W(V) + K(SW)\T'Y) = Fltoo)(v) = Gltoo) (v).-
As S(v) C 'Y, we have K(S(v)\I'Y) < K(I'N\TI'Y) = K(I'\I',), so that inequality (5.42)
implies (5.26).

Taking v := U, from (5.31) and (5.41) we obtain
lim sup [W(Vuk) — Ftw)(ur) — g(tk)(uk)] <

k—o0

< W(VUOO) - f(too)(uoo) - g(too)(uw> .
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This inequality, together with (5.32), (5.36), and (5.38), gives (5.27), (5.28), and (5.29). O

5.3. Convergence of Riemann sums. To prove Theorem 3.13 we need to approximate
the time integrals of F(t)(u) and G(t)(u) by Riemann sums, uniformly when u varies in a
compact set. As usual, if f is a measurable function defined a.e. on [0,T], the same symbol
f denotes its extension by 0 to [0,7]. We begin by the following remark.

Remark 5.6. Let V be a countable dense subset of W1P(Q;R™) N LI(Q;R™). By Re-
mark 4.13 for every ¢ € (0,7 there exists a sequence of subdivisions (s} )o<;<i, , With

0=s) <s} < - <spl<sit=t, (5.43)
- i -1y
kh_)rgo 1I§a§)§k(sk s, ) =0, (5.44)
such that
i ) . . Sk
Jim S (sh s ) F(sh)(w) - / F(s)(u)ds | =0, (5.45)
— 00 i—1
i=1 Sk
in s
li i i1 i _ 5 ‘ _ 4
ﬁngk%wmm>éﬁ@mw 0 (5.46)

for every u € V.

Lemma 5.7. Let t € (0,7, let V be a countable dense subset of WHP(Q; R™)N LI(Q; R™),
and let (s})o<i<i, be a sequence of subdivisions satisfying (5.43)-(5.46) for every u € V.
Assume that

lim (sh — si Dep(sh) — /i_1 ©(s)ds ‘ =0 (5.47)
Sk

whenever ¢ is any one of the four functions of , 57, af, and ﬁ4g which appear in (3.21)

and (3.37). Then

lim ik sup ‘(S?C — s F(sh) (u) — /jzl F(s)(u)ds ‘ =0 (5.48)

k
o0 i—1 uEH

for every compact subset H of Li(;R™), and
i o s
tim Y sup [(sh— )G~ [ Go)wds| =0 (5.49)
R0 £ yen it
for every compact subset H of L"(0sQ;R™).
Proof. Let us fix a compact subset H of L4(Q;R™) and let
M := max{||lullj :u € H} + 1.

For every € € (0,1) there exists a finite number wuy, ..., up € V, with |lu;ll4 < M, such
that for every u € H there exists j with |u — u;|4 < €. Therefore for every v € H and
every s € [0,¢] there exists v;(s) € LI(Q;R™), with [jv;(s)||; < M, such that

[ (5)(u) — F(s)(uy)| < [(OF (s)(v;(s)), u; — )] -
By (3.21) this implies that
[F(s)(w) = F(s)(uy)| < e (af (s)MI1 + B (s)) (5.50)
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for every s € [0,t]. Consequently
(6= s - [ Feds| <
Sk
s,
< Jish = st E )~ [ Fs) ) ds |+
Sk

+e(sp— sy 1) (af ()M + B (s1)) +

i—1

k

ve [ @M+ )
This yields
sup [(s} = st (i) = [ Fls)(u)ds| <
<3k o) < [ F ) i+
be(sh— ) (F (DMI BT (1) +
ve [ @l onri 4 57 () s

Therefore

te Z(% = s, ) (f (sp) MO+ 57 (s3)) +

+5/0 (af ()M + 87 (s))ds.

By (5.45) and (5.47) we have

ik

lim sup Z sup ‘(s}C — s F(sh) (u) — /Sjl F(s)(u)ds| <

k—oo i—1 ueH
t
= 28/ (a7 ()M~ + 57 (s)) ds,
0

and taking the limit as € — 0 we obtain (5.48).
The proof of (5.49) is similar.

6. THE DISCRETE-TIME PROBLEMS

Theorem 3.13 will be proved by time discretization. In this section we study the discrete-
time problems and prove a fundamental energy estimate, which will be crucial in the proof of
the nondissipativity condition for the solution of the continuous-time quasistatic evolution

(condition (c) in Subsection 3.9).
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Let us fix a sequence of subdivisions (¢} )o<;<) of the interval [0,7], with

0=t) <th<---<til<th=T, (6.1)
: i i1y
klingo 112?S)<k(tk t, ") =0. (6.2)
For i =1,...,k we set
= F), Ge=0(0), Y=, Ei=Et). (6.3)

Let (ug, ) be an initial configuration that satisfies the minimality property (3.65). For
every k we define u} and I'{ by induction. We set (ul, I'?) := (uo, [o), and for i = 1,... .,k
we define (uf,I}) as a solution of the problem

min {&} (u, ') : T € R(Qp), [T ' T, ue AD(L, I)}. (6.4)
The existence of a solution to this problem is proved in Theorem 3.8. Note that
Epluy, If) < E(u, ) (6.5)
for every I' € R(Qp), with I} C I' and every u € AD(¢, T'). ‘
Since ¥ € AD(i, I't™'), by (6.4) we have ¢ (t1) (ul) +K () < E(L) (i) +K (T,
which gives £°(¢1)(ul) < E(4)(). By (3.52) this implies
ety (ui,) < af (IVULIE + 194112 + [10klI7 050) + 5
so that by (3.51) there exists a constant C' > 0 such that
IVuill, < Oy Nugllg <Oy uglly <C (6.6)

for every k and i. By Lemma 2.5 the functions u}, belong to WP (Qg;R™) N LY(Qg; R™).
Therefore (3.55) implies that, if we change the constant, we may assume also that

[uf]|lr0s0 < C (6.7)

for every k and i.
For every t € [0,T] we define

T (t) =i, ug(t) == ul , Iy(t) := T},
Filt) = Fpo=F(t), G(t) =G :=0(t), &(t):=E =E),

where i is the largest integer such that ¢ < t. Note that uy(t) = ug(m%(t)) and I'y(t) =
I'y(m(t)). By (6.6) and (6.7) we have

Vur@®)llp <C, Nus@)llg <C, Nur®llg <5 lur(®llrose < C, (6.9)

(6.8)

for every k and every t € [0,T].
We introduce now a sequence of functions which play an important role in our estimates.
For a.e. t € [0,T] we set

01.(t) == (OW(Vur(t)), V(1)) — (OFi(t) (ur (1)), ¥(t)) —
= F () (ur(t)) — (0Gk () (ur(t)), (1)) — G(t)(ux(t)).

The main result of this section is the energy estimate given by the following lemma.

(6.10)

Lemma 6.1. There exists a sequence Ry — 0 such that

75 (t)
() (un (), T(t)) §5(0)(u0,F0)+/() 01 (s) ds + Ry (6.11)

for every k and every t € [0,T].
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Proof. We have to prove that there exists a sequence Ry — 0 such that
o th
Ep(uy, IT) < E(0)(uo, Io) + 0r(s)ds + Ry (6.12)
0

for every k and for every i =1,...,k. ' 4 o
Let us fix j and k with 1 < j < k. Since uk by Yl — wi_l € AD( i,Flg_l), by the
minimality condition (6.4) we have

o R . L
Eplup, ) < Elw™ + g — vy 1) (6.13)

We now estimate & (ul ' —l—.wi - w%_l, Fjg_l) in terms of &' (ul ', Fg_l)
Let us consider first W(ul " + 1] — 7~ "). There exists a constant p], € [0,1] such that

WVl + Vi, — Vil ) = W(Vu), ) =

= <8W(Vui71 _}_pi(ij vw] 1))7V’(/1J V¢ 1>7 (6.14)

where (-,-) denotes the duality pairing between L (€;M™*™) and LP(Q;M™ ™). Let us
consider the piecewise constant function ¥y € L ([0, T]; LP(€; M™*™)) defined by

o . ot . _
Uy (s) := ph(VYl — VL") = pl / Vi(r)dr  for Tt <s<t]. (6.15)
y

k

Since s — Vi)(s) belongs to L([0,T]; LP(Q; M™*™)), by the absolute continuity of the
integral we have that

[¥(s)||[p — O uniformly with respect to s € [0,T]. (6.16)

Therefore by (6.9) we may assume that ||[Vug(s) + x(s)|l, < C + 1 for every s € [0,T].
From (6.14) and (6.15) we obtain

W(Vu;—lJrW Vi = W(Vul ) =

- /tk (OW(Vug(s) + Tr(s)), Vib(s)) ds . (6.17)

i—1
k

Let us consider now fg(ug;l + 1/1% — wifl). There exists a constant O'i € [0,1] such that

Fw 0k =l = Al = OF T + ol -l ), vl - vk, (618)

where (-,-) denotes now the duality pairing between L9 (;R™) and L9(Q;R™). Let us
consider the piecewise constant function ¢ € L*([0,T]; LI(2;R™)) defined by

o . ot . .
on(s) = ol (] — i) = o7 /7 W(r)dr for Hl<s <t (6.19)
d

Since s — 1)(s) belongs to L'([0,T]; LY(;R™)), by the absolute continuity of the integral
we have that

llox(s)]lg — O uniformly with respect to s € [0,77]. (6.20)

Therefore by (6.9) we may assume that ||ug(s) + ¢x(s)|lg < C+1 for every s € [0,T7].
From (6.18) and (6.19) we obtain

Fllug ™ + o =) = Fllw ) =

= /t’C (8‘7:%(1%(8) + ©i(s)), 1/)(3» ds . (6.21)

j—1
k
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By (3.17) for every s € [t ", #]) we have
(O un(s) + 91(5), (5)) — (OF (3)1(5) + o1 (5)). H()) =
~ [ 0F O ) + prls) Do o,
OF ).V~ OF (o)) = [ (0F0)un(s). 5060 o

By (3.21) this implies that for every s € [tifl, t{c)
[(OF] (ur(s) + @1 (s)), 1 (5)) — (OF (s) (un(s) + r(5)), ()| <AL [d(s)]lg,  (6.22)
[(OF () (un(s)), ¥(s)) = (0Fk () (ur(s)), ¥ ())| <AL [9(3)]la s (6.23)

where

W = max /k (a7 (s)(C + 1)1 + 57 (s)) ds.

1<i<k Jyim1
By the absolute continuity of the integral we have
W =0, (6.24)
and by (6.21) and (6.22) we have
Fla "+~ - Al 2

> [ 0FG) ) + o) b ds—of [ 9@lads. (625
Since by (3.16)
Flul ™) - F )Y = tj: Fs)(ui ™) ds = H_: F(s)(ur(s)) ds, (6.26)

from (6.25) and (6.26) we obtain
Rl ol -0l = F w7 2

> / *(0F (s)(un(s) + o (5)), $(s)) ds + (6.27)

Jj—1
k

4 o
+ [ O ) ds—F [ 106 s,
tt 1
Finally, let us consider Qi(ufc_l + ¢i - wi_l). The same arguments used for f,z show
that there exist a sequence 'yg of real numbers, with
49 =0, (6.28)
and a sequence (i, € L*([0,T]; L™ (0sQ; R™)), with
1Ck(8)|lr,090 — O uniformly with respect to s € [0,T], (6.29)

such that

(0G(5) (ur(5)), () — (9Gk(5) (un(s)), ()] < A7 I4h(8)lr050 (6.30)
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and

Gl "+ — i Gl (] >
> /tj:@g(s)( k() + Ci(s)), 9 (s)) ds + (6.31)

[ oo <>>ds—vk/ 9(5lno02 ds.

Jj—1
k

By (6.13), (6.17), (6.27), and (6.31) we have

el T - & <
|

< / " OW(Tur(s) + Wa(s)), Vib(s)) ds —
i 1

/t 1 9+l ds— [ FOl)ds— (632

j—1
ty,
J
by,

—/tH(é‘Q’(S)(Uk(S)+Ck(8)),¢'(8)>ds— G()(uk(s)) ds +

i1

t
oo [ 10lids+1F / (5}l aucs ds.
k

Let us fix now i with 1 <4 < k. By summing for j =1,..., i we obtain

Ex(ug, TE) — £(0) (uo, I) <

< / COW(Vu(s) + Ti(s)), Vis)) ds —
/ ) + or()), $(s)) ds — / " F(s)(un(s)) ds — (6.33)
0 0 .
/ )+ Gus)) D) ds — [ G un(s)) ds +
0 0

th
+of / () lgds+F [ (3 losn ds.
Using Lemma 4.9, from (3.8), (3.10), (6.9), and (6.16) for a.e. s € [0,7] we obtain
(OW(Vur(s) + Wi (s)), Vi (s)) — (OW(Vur(s)), Vi (s)) — 0
and by (3.12) and (6.9) we have

(OW(Vur(s) + Wi(s)), Vir(s)) = (OW(Vux(s)), Vii(s))] <
< 2(af(C+ 1P+ B IV ()l -

As s V(s) belongs to L'([0, T]; LP(Q; M™*")), we deduce that

T
/O [(OW(Vui(s) + Wi(s)), Vii(s)) = (OW(Vui(s)), Vi (s))| ds — 0. (6.34)
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By (3.14) and Remark 4.10 we can apply Lemma 4.9. Therefore from (6.9) and (6.20)
for a.e. s € [0,T] we obtain

(OF (5) (un(s) + r(8)),4(s)) — (OF () (un(s)),4(s)) — 0,
and by (3.19) and (6.9) we have

[(OF () (ur(s) + k(s)), ¥(s)) — (OF () (uk(s)), ¥(s))] <
<203 (C+ 1) +80) [d(s)]g -

As s — 1)(s) belongs to L'([0,T]; LY(Q;R™)), we deduce that

/0 [(OF (s)(ur(s) + pk(s)), ¥(s)) — (OF (s)(ur(s)), ¥(s))| ds — 0. (6.35)

Finally, by (3.30) and Remark 4.10 we can apply Lemma 4.9 again. Therefore from (6.9)
and (6.29) for a.e. s € [0,T] we obtain

(0G(s)(ur(s) + Cr(s)), ¥ () — (0G(5) (un(s)), ¥ (s)) — 0,
and by (3.35) and (6.9) we have

100G (5) (ur(s) + C(5)), 9 (5)) — (G () (ur(s)), ¥(s))| <
< 2(a§(C+ 1)+ B5) [14(5)l|r050 -

As s 9(s) belongs to L'([0,T]; L" (3sQ; R™)), we deduce that
/0 1(0G(5) (ur(s) + Cr(5)), 1 (s)) — (9G(s) (un(s)), ¥(s))| ds — 0. (6.36)
Let

R | 1 OW(Tak(5) + Ui (5)), TE9)) — (OW(Tak()), V)] ds +
- * O () (5) + (), H(6)) — (OF () k() 5D s +
- O () (9)), H5)) — (Ol an(s)), 5D s + (6.37)
+f 10066 (uk(9) + (), $6)) — (0G(5) un(s)), 9} ds +
+f " 106(6) (e (9), 5(5)) — (0Gus)un(s)), 9] ds +

T T
#f [ 16 ds +9f [ 16ands.

Then Ry, — 0 by (6.23), (6.24), (6.28), (6.30), (6.34), (6.35), and (6.36). Inequality (6.12)
follows from (6.33) and (6.37). O

Remark 6.2. By (3.12), (3.19), (3.20), (3.35), (3.36), and (6.9), the integral term in (6.12) is
bounded uniformly with respect to k and 4, therefore the same property holds for & (uj, I'}).
By (3.6), (3.46), and (3.51), this implies that there exists a constant M > 0 such that

H (I (t)) < M (6.38)
for every t € [0,T] and every k, where I';(t) is defined in (6.8).
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Remark 6.3. We notice that the integral which appears in (6.12) can be written as a sum
which involves F(t), G(t), 1(t) only at the discrete times ¢ = ¢],. Indeed we have

th i 4 ' |
/ Op(s)ds =Y (OW(Vu "), Vol — Vi ™') —
0

7 %

=D OF T W) =) = DRl = A ] -

j=1 j—l
= OG Wl -l Z G ()
j=1 j=1
for every k and for every i =1,...,k.

7. PROOF OF THE MAIN RESULT

We are now in a position to prove the main result of the paper.

Proof of Theorem 5.15. Let us fix a sequence of subdivisions (t%)o<i<j of the interval [0, T
satisfying (6.1) and (6.2), and let (ug, I'y) be an initial configuration satisfying the minimal-
ity property (3.65). For every k let (ui,I'), i =1,...,k be defined inductively as solutions
of the discrete problems (6.4), with (ul, I'?) := (uo, Io), and let 75, (¢), ug(t), [k(t), Fr(t),
Gr(t), &k(t) be defined by (6.8). By (6.38) and Theorem 4.8 there exist a subsequence, still
denoted Iy, and an increasing set function ¢ — I'*(t), such that

TN (t) oP-converges to I'*(t) (7.1)

~

for every t € [0,T], where I'V(t) := Ix(t) U NS, according to (5.1). Since IYV(t) C
QpUINQ and OnS is closed, we deduce, thanks to Remark 4.4-(b), that I'*(t) C QpUAIN
for every t € [0,T]. Let I': [0,T] — R(Qp) be the increasing set function defined by

I'(t) == I (¢)\OxQ (7.2)
By (5.2) and (5.3) for every ¢ € [0,7] we have
K(I(1) = K(I™ (#)) < liminf K(I (1)) = lim inf (T (2)) (73)
For a.e. t € [0,T] we set
0o (t) == lilgn_gp Or(t), (7.4)

where 0, is defined by (6.10). By (3.12), (3.19), (3.20), (3.35), (3.36), and (6.9) we have
10k ()] < (Y CP=1 + B[V (D)l + (aF C17 + 8T) [ (B)llg +
+af ()CT+ B () + (a§C1 + BF) [ (1) [Iros0 + o ()C™ + 55 (1) .

As the right hand side of this inequality belongs to L!([0,T]), the function 6, belongs to
LY([0,T]) and, by the Fatou lemma,

7k (t) t
lim sup/ Or(s) ds < / Oo(s)ds. (7.6)
k—oo JO 0

For every ¢ € [0,7] can extract a subsequence 6y, of 0, depending on ¢, such that

Ooc(t) = Jim 01, (1). (7.7)

(7.5)

By (6.5) and (7.1) we can apply Theorem 5.5 to 73,(t), Ik, (t), and ug,(t). Therefore
there exist a further subsequence, still denoted ug; , and a function u(t) in AD(«(t), I'(t))
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such that
ug; (t) — u(t) weakly in GSBVP(Q;R™), (7.8)
ug, (t) — u(t) weakly in L9(;R™), (7.9)
ug, (t) — u(t) strongly in LI(Q;R™), (7.10)
ug,; (t) — u(t) strongly in L"(0sQ;R™), (7.11)
Vg, (£) = Vu(t) weakly in LP(Q; M™X") . (7.12)

Moreover
E)(u(t), I'(t)) <€) (v, I) (7.13)

for every I' € R(Qp), with I'(t) C I', and every v € AD(¢(t),I"). This proves that
t — (u(t),I'(t)) satisfies properties (a) and (b) of the definition of quasistatic evolution
(Subsection 3.9).

By (7.9)—(7.12) there exists a constant C' > 0 such that

IVu@®)ll, <C, u@®llg <C, Ju@lly <C,  flu@®)]rose < C (7.14)

for every ¢ € [0,T].
Finally Theorem 5.5 implies that

W(Vug, (t)) = W(Vu(t)), (7.15)
Ty () (u ](t)) F @) (ult)), (7.16)
G, (1) (ux, (1)) — G(B)(w(t)). (7.17)
Using Lemma 4.11, from (7.8) and (7.15), we obtain
(OW (Y, (1), V(1)) — (OW(Vu(t), Vi (1)) - (7.18)

By (7.10) the sequence 0.F(t,z,us,(t)) converges to 0. F(t,z,u(t)) in measure on . By
(3.19) and (7.9) it is bounded in L9 (;R™). Therefore 9,F(t,z, ug, (t)) converges to
O.F(t,z,u(t)) weakly in L7 (€;R™), and consequently by (3.14)

(OF (8) (ur, (1)), (1)) — (OF () (u(t)), ¥(1)) , (7.19)
so that by (6.23) and (6.24) we obtain
(OF i, () (ur, (), () — (OF (t)(u(t)), (1)) - (7.20)

Observing that F(t) is continuous on Li(€; R™), while dG(t) and G(t) are continuous on
L™ (0sQ;R™), by (7.10) and (7.11) we have

F(t) (g, (1)) — F)(u(t)). (7.21)
(0G (1) (ur, (1)), (1)) — (9G(1) (u(t)), $(t)) , (7.22)
G(t)(m, (1)) — G (1) (u(t)), (7.23)
so that by (6.28) and (6.30) we obtain
(0G,; (1) (ur; (1)), (1)) — (9G(8) (u(t)), D (t)) - (7.24)
For a.e. t € [0,T] we set
6(t) == (OW(Vul(t)), Vi (t))
= F(t)(u(t)) = (9G(t)(u(1)),
= (g(t), (1)) — F()(ult)) — G(£)(u(t)

= F(
where g(t) is defined by (3.58). From (6.10), (7.7), (7.18), (7.20), (7.21), (7.23), and (7.24)
we obtain

e

)
(u(t)) = (7.25)

~—

0o (t) = 6(2) (7.26)
for a.e. t €[0,7T].
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By (7.3) and (7.15)—(7.17) we have
(0)(ult), D(0)) < Hanint &, (1), (), iy (1) < o sup &) ue(0), ) . (7.27)

k—o0

From (6.11), (7.6), and (7.26) we obtain

lim sup & (¢) (ur (t), Ik(t)) < £(0)(uo, I'o) + /Ot 0(s)ds. (7.28)

k—oo

By (7.27) and (7.28) we have

@) (u(t), T(£)) < E(0)(uo, Io) + /0 0(s) ds. (7.29)

To conclude the proof of the theorem it is enough to show that

E(@)(u(t), T(1)) > £(0)(uo, Ty) + / () ds (7.30)

for every ¢ € [0,7]. Indeed (7.29) and (7.30) imply that ¢ — E(t) := E(t)(u(t), I'(t)) is
absolutely continuous in [0, T] and that E(t) = 6(¢) for a.e. t € [0,T]. By (7.25) this yields
condition (c) of the definition of quasistatic evolution (Subsection 3.9). O

In order to prove (7.30) we need the following lemma.

Lemma 7.1. Assume that t — (u(t), I'(t)) satisfies conditions (a) and (b) in the definition
of quasistatic evolution (Subsection 3.9). Let t € [0,T] and let si be a subdivision of [0,1]
satisfying (5.43) and (5.44). Then there exists a sequence Sk(t) — 0 such that

£, (1) 2 EO) o, To) +° [ (OW(Tu(s1)), T(5)) ds -

5 / 7 (OF (si)(u(sh). (s)) ds = 3 / F(s)(ulsh)) ds — (7.31)
72/ (06 (sk) (u(51)), () ds Z/ G(s)(u(sh)) ds — Si(t).
i=1" 5k = Jsi

Proof. The minimality property in condition (a) gives £(t)(u(t), I'(t)) < E(t)(¥(t), I'(t)),
hence £°(t)(u(t)) < £%(t)(y(t)). By (3.51) and (3.52), this implies that there exists a
constant C' > 0 such that

IVu@®ll, <€, Ju@®)lls <O lu@®)lly <€ (7.32)

for every t € [0,T]. By Lemma 2.5 the functions u(¢) belong to W1P(Qg; R™)NLI(Qg; R™).
Therefore (3.55) implies that, if we change the constant, we may assume also that

lu(®)|ros0 < C (7.33)

for every ¢ € [0,77].
For every k let oy: (0,t] — (0,t] be the piecewise constant function defined by

or(s) = st for si™!t < s < si,
and let vy : (0,t] — GSBVP(;R™) be the piecewise constant function defined by
v (s) == u(st) = u(on(s)) for sj7' <s<sp. (7.34)
For every i = 1,...,ir we have u(si) — ¢(si) + ¥(si ') € AD(W (s} "), I'(s})) and
I(si7') € I'(s}). By the minimality property in condition (a) we have
E(sy Dulsy 1), D(si71) < E(si7 ) (ulsk) = v(si) + (s ), L sh) - (7.35)
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Arguing as in the proof of (6.33) we obtain that there exist two sequences J7 and 6,% of
real numbers, with
5 —0, 8 —0, (7.36)
and three sequences Xy, € L ([0, T]; LP(Q; M™*™)), x € L*°([0,T); L1 (Q;R™)), and ny, €
L>°([0,T]; L™ (0sQ; R™)) , with

1 X% () lp + Ixk(s)llg + 1176 (8)|lr,090 — O uniformly with respect to s € [0,T],  (7.37)

such that
E()(u(t), T (1)) — £(0) (o, To) >
> / (OW(Toi(s) + X(s)), Vis)) ds —
0
- / (OF (01(5)) (0 (3) + xa(5)), B(5)) ds — / F(s)(on(s)) ds — (7.38)
= [[09(au (o)) + mls)) D ds ~ [ Gl onls)ds -
0 0
e / (s)11q ds — 69 / 1) s ds
Let

Sk(t) := /0 [(OW(Voi(s) + Xi(s)), Vi (s)) — (OV(Vur(s)), Vi (s))| ds +
T
+/O (OF (04(5)) vk () + xi(9)),4(5)) = (OF (o1(5)) (vr(5)), Wb (s)) | ds +  (7.39)
+/O 1(0G (01 () (vr(s) + (), ¥(5)) — (9G (on(5)) (vn(s)), ¥ (s))| ds +

T T
L of / l4(s) g ds + 69 / 16(5) 102 ds
0 0

Using Lemma 4.9 as in the last part of the proof of Lemma 6.1, from (7.36) and (7.37) we
obtain that Sj(t) — 0. Inequality (7.31) follows from (7.38) and (7.39). O

Proof of Theorem 3.13 continued. Let us fix ¢ € (0,7]. By Lemmas 4.12 and 5.7 and Re-
marks 4.13 and 5.6 there exists a subdivision si of [0,¢], satisfying (5.43), (5.44), (5.48),
and (5.49), such that

i st
. 7 i—1 i
klggo Z (s), —sp, )0(sy) — /s;';l 0(s) ds ‘ =0, (7.40)
LI o sk
Jim 3 sk~ s Vsh) - / " Wis)ds|| = o, (7.41)
= s P
dim >k ik - [ i as|| <o, (1.42)
i=1 Sk
o S
lim \(s; — s y(st) — / b(s) ds —0, (7.43)
k—o0 P S;'C_l 7,052

Let
H:={u € GSBVP(Q;R™): S(u) C Qp, H"'(S(u)) < M, ||Vul, <C,

lully <C},
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where M and C' are the constants which appear in (6.38) and (7.32). Arguing as in Theo-
rem 5.5 it is easy to prove that H is compact in L4(€;R™) and in L"(9sQ;R™).
Let

wr(t) =Y

> ] ek =i v - [ Vii(s)ds|| +
st =ittty - [ veoras],
+ Z zgp{ sh— s F(sh) () — /jil F(s)(u)ds ‘ + (7.44)
TS I [ / d)as

1=

ik sk

£ sup [(sh i 1>g<sz><u>—/. G(s)(u) ds| + Si(t)
i—1 uEH s;efl

where Si(t) is given by Lemma 7.1. By (3.12), (3.19), (3.35), (7.32), and (7.33) the terms

[OW(Vu(si))llp» 10F (s},) (u(si)llgr s and [[0G(s})(u(sy))llr 050 are bounded uniformly

with respect to k and i. Therefore, using (5.48), (5.49), (7.41)—(7.43), and Lemma 7.1 we

obtain

lim wg(t) =0. (7.45)

k—oo

By (6.38) and (7.32) we have u(s}) € H for every k and i. Taking (7.25) and (7.44) into
account, the estimate from below in Lemma 7.1 gives

E(t)(u(t), I'(t)) = £(0)(uo, I'n) +Z L= s h0(sk) — we(t) . (7.46)

Passing to the limit as k — oo, by (7.40) we obtain (7.30), which, together with (7.25) and
(7.29), yields condition (c) in the definition of quasistatic evolution. O

8. CONVERGENCE OF THE DISCRETE-TIME PROBLEMS

In this section we show that for every ¢ € [0,T] the elastic energies and the crack energies
of the solutions to the discrete-time problems converge to the corresponding energies for the
continuous-time problem. Note that this result can be proved even if the minimum energy
deformations corresponding to a crack I'(t) are not unique, but that it only holds for the
discretizations that produce a given crack I'(t).

Let ¢} be as in Section 6, let (ug, ) be an initial configuration that satisfies the min-
imality property (3.65), and let (u%,I}{) be the solutions of the minimum problems (6.4),
with (ul, I'?) := (uo,Io). Let 7%, uk, Ik, Fr, Gk, and & be the piecewise constant
functions introduced in (6.8), and let £: [0,7] — R be the piecewise constant function
defined by

ER(t) = £ (t) = £ (mk (1)) (8.1)
where ¢ is the largest integer such that tz <t.

Theorem 8.1. Let t — (v(t),I'(t)) be a quasistatic evolution, let ) be defined by (6.10),
and let

0(t) := (OW(Vo(t)), V(1)) — (OF () (v(t)),%(1)) —

~ F 1) (0(t)) — (06(1) (1)), (1)) — G(t) (w(1)) - ®.2)
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Assume that I'y(t) and I'(t) satisfy (7.1) and (7.2) for every t € [0, T]. Then

£(B)(w(t)) = lim EX(0)(un(t) (53)
K(P(1) = Jim K(T(1) (5.4)

for every t € [0,T]. Moreover
O — 0 in L'([0,T]), (8.5)
so that there exists a subsequence of 0j which converges to 0 a.e. in [0,T].

Proof. For a.e. t € [0,T] let 0(t) be defined by (7.4). In the proof of Theorem 3.13 for
every t € [0,T] we constructed a function u(t) € AD(¢(t), I'(t)) such that ¢t — (u(t), I'(t))
is a quasistatic evolution and

E(t)(u(t), T()) = £(0)(uo, Ty) + / o0 (5) ds (8.6)

for every t € [0, T] (see (7.26), (7.29), and (7.30)). Since (u(t), I'(t)) and (v(t), I'(t)) satisfy
the minimality condition (a) in the definition of quasistatic evolution (see Subsection 3.9),
we have

E®)(u(t), I'(t)) = E@)(v(t), I'(t)) (8.7)
for every ¢ € [0,T]. By condition (c) for ¢t — (v(t), I'(t)) we have
EO(D), T(1) = EO)(un, o) / o(s (5.5)

From (8.6)—(8.8) we deduce that
0(t) = 00(t) (8.9)
for a.e. t € [0,T7.
By Lemma 6.1 for every ¢ € [0, 7] we have

& (1)
likrriggf Ek(t) (ug(t), I'u(t)) < E(0)(uo, Lo) + hrriggf/o Or(s)ds, (8.10)
7k (t)
limsup & (t)(ur(t), I't(t)) < E(0)(uo, Iv) + limsup/ 0r(s) ds. (8.11)
k—oo k—o0 0

Let us fix t € [0,7] and let ug,(t) be a subsequence of uy(t) such that
lim EFL () (ur, (1)) = lim inf ECL () (up(t)) . (8.12)
j—o0 J J —00

Since F,i\j'(t) oP-converges to I'*(t), using (6.5) we can apply Theorem 5.5 to 7, (t), Ik, (t),

and uy, (t). Therefore there exist a further subsequence, still denoted ug; (t), and a function
u*(t) € AD(¢(t), I'(t)) such that

W(Vuk (t)) — W(Vu*(t)), (8.13)
( )(uk, (1)) = F() (W (#)) (8.14)
5 () (ur; (1)) — G (W™ (2)) - (8.15)

Moreover
E()(u™(t), I'(t) < E(t) (v, I')
for every I' € R(Qp), with I'(t) C I', and for every v € AD(y(t), I'). Since (v(t), '(t))
satisfies the same minimality property by condition (a) in Subsection 3.9, we have
EX(t)(v(1)) = E(t) (u* (1)) - (8.16)
From (8.13)—(8.15) we obtain

(1) (u* (1)) = Tim £ (1) (ur, (1)) ,

]—>OO
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which, together with (8.12) and (8.16) gives

() (v(8)) = lim inf £71(2)(un(1). (817

By (5.2) and (5.3) we have
K(0(0) = (I (1)) < liminf (LY (1) = lim inf K(L (1)), (8.18)

so that (8.17) and (8.18) yield
E(0(v(t), I(1)) < liminf £ (1) (s (1), Tk(0)). (8.19)

From (7.6), (8.6), (8.7), (8.9), (8.10), (8.11), and (8.19) we obtain

SO0, T1) = Jim &(t)(ux(t), Th(1) (5.20)
/0 “0(s) ds = lim OTk(t) 0 (s) ds (8.21)

for every ¢ € [0,T]. Equalities (8.3) and (8.4) follow easily from (8.17), (8.18), and (8.20).
By (8.21) we have

T T
/ o(t)dt = Tim / 0n (1) dt (8.22)
0 0

k—oo

By (7.4) and (8.9) 6 V 0 converges to 6 pointwise on [0, 7], so that by (7.5)
0 VO — 6 in L' ([0,T]). (8.23)
Since O + 60 = (05 V 0) + (0 A 0), from (8.22) and (8.23) we obtain

T T

/ 6(t) dt = lim (0 N O)(t) dt.
0 k—oo /o

As 0 A O < 0, this implies that 6 A 0 converges to 6 in L'([0,7T]), which, together with

(8.23), gives (8.5). O

9. APPENDIX

In Remarks 3.3 and 3.5 we introduced elementary conditions on F' and G that ensure
that F, F, G, and G satisfy all properties required in Subsections 3.4 and 3.5. It is
easy to see that (3.23) and (3.39) are much stronger than what we need for this purpose.
Indeed, it is enough to assume that the partial derivatives 0,F, O;F, 0,0, F, 0.G, 0,G,
and 0,0;G exist, are measurable with respect to z, and continuous with respect to (¢, z2).
In the rest of this section we show that the same results can be obtained under a less regular
dependence on time, in the spirit of the hypotheses considered for the boundary deformations
in Subsection 3.6.

9.1. Weaker hypotheses on the body forces. We are interested in particular in the case
of dead loads, in which the density of the body force f: [0,T]x{ — R™ per unit volume in
the reference configuration does not depend on the deformation. In this case the simplest
choice for the potential is F'(¢,x, z) := f(t,x)z. But this linear dependence on z can not be
accepted, because it violates the first inequality in (3.18), where af > 0. We may consider
a slight variant, namely

F(t,z,z):= f(t,x)z + Fo(z, 2), (9.1)
where Fp: QxR™ — R is a Carathéodory function. We assume that for every = € Q the
function z — Fy(x,z) belongs to C*(R™) and that for every (z,z) € QxR™

ag|z|? — bo(x) < —Fp(x, 2) < aq]z|?+ by (z), (9.2)
|0, Fo(x,2)] < ag|z]97t + ba(z),
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where ¢ > 1, ag, a1, ay are positive constants, by, by € L1(Q), by € Lq/(Q), and ¢ =
2/l 1)

When the body is subject to a deformation u, the body force acting at time ¢ has a
density per unit volume in the reference configuration given by f(¢,x) + 9,Fo(z,u(z)).
The term f(¢,x) is a time dependent dead load (that we may think of as determined
by an experimental device), while 0, Fy(z,u(z)) can be interpreted as a background time
independent body force. As a consequence of our hypotheses on Fj, this force will prevent
broken parts of the body from finding infinity as only equilibrium configuration.

Let ¢ be a constant in (1,q) and let ¢ = ¢/(¢—1). If ¢t — f(¢,-) is absolutely con-
tinuous from [0,7] into L4 (Q;R™) and t — f(t,-) is its time derivative, which belongs
to L*([0,T]; LY (Q; R™)), we can consider the functional F(t): LI(Q;R™) — R defined for
every t € [0,T] by (3.13), with F given by (9.1), and the functional F(¢): LI(Q;R™) — R
defined for a.e. ¢t € [0,T] by

fwwwzéf@@w@m.

We can easily check that in this case F and F satisfy all properties required in Subsec-
tion 3.4.

Note that these hypotheses do not guarantee the existence of the partial derivative
OcF(t,x, z) for a.e. t € [0,T] and for every (z,z) € QxR™, so that Remark 3.3 can not be
applied.

We now present a more general set of hypotheses, which includes this case as well as those
considered in Remark 3.3. More precisely, we assume that F': [0, T]xQxR™ — R satisfies
the following conditions

for every z € R™ the function (¢, z) — F(t,x,z) is L} x L"-measurable on [0, 7]x, (9.4)
for every (t,z) € [0, T]x€ the function z — F(¢,x,z) belongs to C*(R™). (9.5)

Moreover, we assume that that there exist four constants ¢ > 1, al’ >0, af”" >0, af >0
and three nonnegative functions bf , b¥' e C([0,T]; L*(Q)), b5 e C°([0,T]; LY (Q)), such
that

aOF‘Z|q - bg(tvx) S 7F(tax,z) S af"dq + bf(tv‘x)a (96)
0:-F(t,2,2)] < af|2|"" ! + b5 (¢, 2), (9.7)

for every (t,z,z) € [0, T]xQxR™.
~ To deal with the dependence of F' on t, we assume that there exists a function
F: [0, T]xQxR™ — R such that for every ¢ € [0,T] and for every z € R™

t
F(t,z,z) = F(0,x, 2) —|—/ F(s,x,z)ds for a.e. x¢€Q, (9.8)
0

t
0, F(t,x,z) =0,F(0,x, z) +/ 0.F(s,x,2)ds for a.e. z € Q. (9.9)
0

The integrals in (9.8) and (9.9) are well defined since we assume also that
for every z € R™ the function (t,z) — F(t,,2) is £'x L™-measurable on [0, T]x, (9.10)
for every (t,z) € [0, T]xQ the function z — F(t,z, z) belongs to C(R™), (9.11)

and that there exist a constant ¢ € [1,q) and four nonnegative functions af’, af" € L*([0,T7),
b e LY([0,T); LY(Q)), and b € L'([0,T]; LY (€2)) such that

|F(t, 2, 2)| < ab (t)]2]9 4 b5 (t, ), (9.12)
0. F(t, 2, 2)| < af (8)]2]97" +0f (¢, 2) (9.13)
for every (t,z,z) € [0, T]xQxR™.
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The functionals F(t): LY(Q;R™) — R and F(t): LI(QR™) — R are defined by (3.13)
and by

F(t)(u) ::/QF(t,:v,u(x))dx. (9.14)

Using (9.4)—(9.7) it is easy to see that F(t) is of class C* on L1(Q;R™) and that (3.14)
and (3.15) hold. By (9.10)—(9.14) for a.e. t € [0,7] the functional F(t) is of class C! on
Li(;R™) and

(OF (t)(u),v) = /Q A E(t, x,u(x)) v(x) dx (9.15)

for every u, v € L4(Q;R™), so that the functions t — F(t)(u) and t — (9F(t)(u),v) are
measurable on [0, 7] for every u, v € LL(Q; R™). From (9.8) and (9.9) we obtain (3.16) and
(3.17) for every pair of simple functions u and v from € into R™. An easy approximation
argument shows that (3.16) and (3.17) hold for every u, v € L7(;R™). Inequalities (3.18)—
(3.21) follow immediately from (3.13), (3.14), (9.6), (9.7), and (9.12)—(9.15).

Remark 9.1. Let us check that, under the hypotheses on Fj considered above, if the func-
tion ¢ — f(t,-) is absolutely continuous from [0,7] into L% (€;R™) and 1 < ¢ < 1, then
the function F defined by (9.1) satisfies (9.4)(9.13) with F(t,z,z) := f(t,z)z. Properties
(9.5) and (9.11) are trivial; (9.4) and (9.8)—(9.10) follow from well-known properties of abso-
lutely continuous functions with values in reflexive Banach spaces (see, e.g., [5, Appendix]).
By the Cauchy inequality we have

a 1 1% ’
—F(t,x,2) > q—?|z|q UL COELIOP

so that the first inequality in (9.6) is satisfied with al" = ao/q’ and bf (¢,z) := bo(z) +
(aé/(lfq)/q’ﬂf(t,x)\ql. The second inequality in (9.6) can be obtained in a similar way,
while (9.3) yields (9.7) with af :=as and bf (¢, ) := ba(x) + |f(t, 2)|.
To prove (9.12) we observe that by the Cauchy inequality we have
' - L feaf 1 -
[F(t,2,2)| = [f(t,2)z] < === + <[ f(t,)lar |2,
¢\ fENE d

so that inequality (9.12) is satisfied with bE (¢,2) :== (1/¢")|f(t,z)|9 || f(t, -)Hé,_q/ and af'(t)
= (1/9)||f(t,)|l4 - Finally, (9.13) holds with a} (t,2) := 0 and b} (¢, ) := |f(t,z)|.

9.2. Weaker hypotheses on the surface forces. In the case of a time dependent dead
load, the density g: [0,T]x9sQ — R™ of the applied surface force per unit area in the ref-
erence configuration is independent of the deformation w. Then, the simplest choice for the
potential is G(¢,x, z) := g(t,z)z. Let r and 7’ be as in Subsection 3.5. If ¢t — g(¢,-) is abso-
lutely continuous from [0, 7] into L™ (9s€2; R™), and ¢ — §(t,-) is its time derivative, which
belongs to L'([0,T]; L™ (8sQ; R™)), we can consider the functional G(t): L" (g€ R™) — R
defined for every t € [0,T] by

G(t)(u) = /6 g(t.2)u(e) a7 @),
and the functional G(t): L"(Q;R™) — R defined for a.e. t € [0,T] by
G()(u) = /a glt.) ua) dn (@),

We can easily check that in this case G and G satisfy all properties required in Subsection 3.5.

Note that these hypotheses do not guarantee the existence of the partial derivative
0:G(t,x,z) for a.e. t € [0,T] and for every (z,z) € dsQxR™, so that Remark 3.5 can
not be applied.
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We present now a more general set of hypotheses which includes this case as well as those
considered in Remark 3.5. More precisely, we assume that G: [0, T|x9sQxR™ — R satisfies
the following conditions:

for every z € R™ the function (¢, ) — G(t,x, z) is L1 xH"L-measurable, (9.16)
for every (t,z) € [0, T]x0s) the function z — G(t,z, z) belongs to C1(R™).  (9.17)
Moreover, we assume that there exist two constants a > 0, a§ > 0 and four non-
negative functions a§ € L>®([0,T]; L™ (9s2)), b§, b e CO([0,T]; L1 (8sQ)), and b§ €
C0([0,T); L™ (9s€2)) such that
—a§ (t,2)|z] = b5 (t,2) < —G(t, 2, 2) < af|z|" + b (¢, 7), (9.18)
10.G(t, 2, 2)| < aS|z["~ + b5 (t, ) (9.19)
for every (t,z,z) € [0,T]x0sQxR™.
~ To deal with the dependence of G on t, we assume that there exists a function
G: [0, T|x0s2xR™ — R such that for every t € [0,7] and for every z € R™

t
G(t,z,z) = G(0,x, 2) +/ G(s,z,2)ds for H* '-a.e. x € g9, (9.20)
0
t
9.G(t,x,2) = 9,G(0,x, 2) —|—/ GZG(S, r,z)ds for H" l-ae. z € 5. (9.21)
0

The integrals in (9.20) and (9.21) are well defined since we assume also that

for every z € R™ the function (¢, z) — G(t,z, z) is £!xH" -measurable, (9.22)
for every (t,z) € [0, T]xsS the function z — G(t,z, z) belongs to C1H(R™),  (9.23)

and that there exist four nonnegative functions a$’, a§ € L*([0,T)), b§ € L*([0, T]; L*(9s9)),
and b§ € L'([0,T], L™ ()) such that

|G(t,, 2)

| <a$(t))z|" + b5 (¢, 2), (9.24)
0.G(t,z,2)|

<
<a§(t)|z|""t + 0§ (¢, x) (9.25)

for every (t,z,z) € [0, T]x0sQxR™.
The functionals G(t) and G(t): L"(0sQ;R™) — R are now defined by (3.29) and by

G() () = /8 Gt (@) a7 o).

Arguing as in Subsection 9.1 it is easy to prove that G and G satisfy all properties required
in Subsection 3.5.

Remark 9.2. As in Remark 9.1 we can prove that, if the function ¢ — g(t,-) is absolutely
continuous from [0, 7] into L" (g€ R™), then the function G(t,z,z) = g(t,z)z satisfies
(9.16)—(9.25) with G(t,x,2) := g(t,x)z.
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