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1 Introductory remarks

1.1 Setting of the problem:

In recent years damage and fracture have acquired a formidable status in
the battlefields of solid mechanics. Perniciously weakening the stiffest solid
samples damage has become the everpresent material tyrant, resisting all ra-
tionalizing attempts and defying an expanding taxonomy. Fracture, an older
sibling, still delivers deadly slashes to even the most respectable materials
and at the most unexpected angles.

At the same time the conceptual distance between them has been
steadily shrinking: many a damaging material observed at a fine scale ex-
hibits a vast array of tiny cracks while crack propagation strongly depends
on the distributed damage in the so-called “fracture-process zone” (see e.g.
[Chudnovsky Wu 90]).

A thorough understanding of the relationship between fracture and
damage should therefore encompass the entire range of the damaging pro-
cess, from its distributed onset to its climatic localization in the form of
a “crack”. This will not be achieved in the present study which operates
under the simplistic premise of scale separation. Indeed it is assumed there-
after that the weakening micromechanisms that preside over the damaging
process are taking place at a scale which is far smaller than that at which
fracture takes place. It is also assumed that the configurational force needed
to break atomic bonds and to promote crack propagation is not affected by
the damaging process. Specifically, following [Francfort Marigo 93] our
study will focus on a material that experiences brutal partial damage: the
material is only allowed to brutally drop from its healthy state to its dam-
aged state, the latter retaining some positive definite stiffness (hence the
partial character of the damage). The mechanisms at the origin of that
specific pattern of damage are not part of this investigation. Of course we
readily concede that the presupposed independence of the configurational
force upon such mechanisms might be construed as a fatal flaw by a stern
observer of the lattice.

This material is further allowed to experience fracture, i.e., to develop
material discontinuities at a macroscopic level. The quasistatic evolution of
both damage and fracture is governed by a yield criterion, in accordance
with the presupposed brittleness of the material. Furthermore the criterion
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is energetic: it compares the decrease in potential energy due to either
damage (in which case it is a local decrease) or fracture ( in which case it is
a global decrease) to the resulting increment of energy dissipated through
either process. Such a criterion is well known in fracture mechanics after the
work of Griffith (cf. e.g. [Gdoutos 90], Chapter 4) and it may be shown
to be the only thermodynamically compatible criterion in brutal damage
(see [Marigo 89]).

Both processes are further assumed to be irreversible. In other words,
self-healing is absent from both the damaged part of the material and the
cracks through that material.

The adopted model results in a time indexed sequence of partial mini-
mization problems; the Lagrangian density depends on the deformation field
and on the characteristic function of the damaged area and it must be such
that, at the solution(s), the resulting potential energy is separately minimal
at each time among all admissible field variations.

Unfortunately the search for stationary points of the potential energy
is a delicate one from the standpoint of the calculus of variations and may
lead to too many solutions in the absence of additional selection criteria (see
[Francfort Marigo 91], Subsection 2.3). We impose as selection criterion
the global stability of the solution(s). In other words we postulate that the
material will try to minimize its potential energy among all admissible field
variations. This is of course a drastic restriction and its impact on the
physical appropriateness of the proposed model could well be devastating.
The reader is kindly invited not too judge such a step too harshly; to reject
global stability is also to forfeit all hope for a detailed mathematical analysis
of the problem.

The potential energy to be minimized is generically of the form

∫

body
W (∇u)dx+ λHN−1(S(u)) −

∫

body
f · udx, (1.1)

where u is the deformation field, W (ξ) is an “elastic type” energy density,
λ is a dissipation rate and f represents the body loadings. Two distinctive
features lie at the crux of the mathematical difficulty: the functional space
where u should live, namely BV – a convenient space so as to lend a meaning
to S(u), the jump set of u – and the non quasiconvex character of W which
forces relaxation even in the absence of jumps of u. In other words the
mathematical stake is the relaxation in the strong topology of L1(Ω; Rk) –
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Ω is the domain occupied by the body – of a nonconvex functional of the
form (1.1) (with appropriate growth, coercivity and regularity properties)
over the space BV (Ω; Rk).

Unfortunately the problem at hand is not well formulated because of
a troublesome pathology of the space BV . The distributional gradient of a
function u in BV (Ω; Rk) – a finite Radon measure on Ω – may be decom-
posed as

Du = ∇udx+ (u+ − u−) ⊗ νuH
N−1⌊S(u) + C(u),

where ∇u(x) is a L1(Ω; Rk)-function (the density of the absolutely continu-
ous part of the measure Du), S(u), the jump set of u, is an N −1 rectifiable
hypersurface with normal vector νu, u+ and u−, the traces of u on each side
of S(u), are such that, for HN−1-a.e. x0 in S(u),

lim
ǫ→0+

1

ǫN

∫

{y∈B(x0,ǫ);(y−x0)·νx0
>(<)0}

|u(y) − u+(u−)(x0)|N/(N−1)dy = 0,

and C(u), the Cantor part of the measure Du satisfies, for any Borel subset
B of Ω,

HN−1(B) < +∞ =⇒ |C(u)|(B) = 0.

See e.g. [Federer 69], Thm. 4.5.9, [Vol’pert 69], [Federer Zimer 72],
[Ambrosio 89b, 93 b].

The following result holds true (cf. [Ambrosio 89b]):
Any u in L1(Ω; Rk) may be approximated in the strong topology of L1(Ω; Rk)
by a sequence un in BV (Ω; Rk) such that

Dun = C(un),

and consequently such that










∇un = 0 a.e. in Ω,

HN−1(S(un)) = 0.

Therefore, if the energy density W in (1.1) is such that W ≥ 0, W (0) =
0, the relaxation of

∫

Ω
W (∇u)dx+ λHN−1(S(u))
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will be identically 0 for any u in BV (Ω; Rk).

We are thus forced to restrict the relaxation to sequences un in
BV (Ω; Rk) such that

|C(un)| = 0,

i.e., to sequences un in SBV (Ω; Rk) for which such a pathology will not
occur. The space SBV (Ω; Rk) was firstly introduced in [De Giorgi Am-

brosio 88].

1.2 Outline:

Section 2 is devoted to the mathematical analysis of the strong-L1 relaxation
of functionals of the form

∫

Ω
W (∇u)dx+ λHN−1(S(u)), λ > 0, (1.2)

where W has p-growth (p > 1) and satisfies a local Lipschitz condition (see
(2.3)). The result is that the relaxation of (1.2) is

∫

Ω
W ∗(∇u)dx+ λHN−1(S(u)),

where W ∗ is the quasiconvexification of W (see Theorem 2.1). The analysis
relies heavily on the blow-up method (see [Fonseca Müller 92, 93]) and
on Ambrosio’s lower semi-continuity result in SBV (Ω; Rk) for quasiconvex
Carathéodory integrands with superlinear growth (see [Ambrosio 93a]).

Section 3 addresses the problem of the evolution of damage and frac-
ture briefly described above. The quasistatic evolution is investigated at
discretized times and the resulting sequence of minimization problems is
obtained in Problem 3.4. A first subsection examines the first time step
t1 and demonstrates the existence of a minimizing deformation field u1 for
the relaxed problem (Proposition 3.7). From a mechanical standpoint the
quasiconvexification of the energy density amounts to the formation of fine
mixtures of the healthy and damaged phases at each point of the uncracked
part Ω1 of the body. To this pointwise mixture corresponds a local volume
fraction of the damaged phase θ1(x). Its existence is guaranteed through
Proposition 3.11.

A second subsection investigates the following time steps. Because
the relaxation at the first time step is only capable of producing a local
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volume fraction θ1(x) of the damaged material the irreversibility constraint
at later time steps—namely the monotonically increasing character of the
characteristic function of the damaged material—has to be weakened: the
volume fraction θ(x) of damaged material is constrained to monotonically
increase from its value θ1(x) at subsequent time steps. We do not know
as of yet how to operate a bona fide relaxation of the problem over all
time steps and we thus postulate the form of the relaxed problem for the
subsequent time steps (Problem 3.13). This forces us to directly examine the
weak lower semicontinuity of the resulting functional at those time steps. In
fact it suffices to prove that the bulk energy density (that associated to the
density ∇u(x)) is quasiconvex. This problem is shown to be equivalent to a
homogenization conjecture (see Conjecture 3.15) pertaining to the canonical
character of periodic homogenization as far as the energy density associated
to mixtures of two phases is concerned. If such a conjecture holds true – and
it is known to be in some useful cases ( see Remark 3.16)—then the time
indexed sequence of “relaxed” problems has solutions and the evolution of
the damage and fracture may proceed (Proposition 3.17).

It should be emphasized, at the close of this introduction, that the
proposed model is but a tentative step in the direction of a mathematical
theory of the quasistatic evolution of either damage or fracture, or both. As
far as damage is concerned, it permits to avoid too much phenomenology in
the choice of a damage variable: the damage variable, i.e., the local volume
fraction of damaged material, appears as a byproduct of the search for a
stable evolution (see [Francfort Marigo 93] for a more detailed insight
into the structure of the resulting model when each phase is linearly elastic).
As far as fracture is concerned, it avoids all reference to a particular crack
shape, and furthermore does not a priori require the classical notch-type
setting of fracture mechanics at the inception of the crack. It is however
plagued by at least two deficiencies that could prove fatal in the long run: it
operates, as already discussed, under the premise of global stability and it
may generate a continuum of bifurcating solutions in its time-undiscretized
version.

2 Relaxation in SBV versus relaxation in W
1,p

Our goal in this section is to explore the connection between the W 1,p−
quasiconvexification of a functional of the gradient of a vector field and the
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relaxation in SBV of that same functional, whenever the associated energy is
penalized through the introduction of a term of surface energy proportional
to the measure of the “jump set” of the trial functions.

Specifically, let W (ξ), ξ ∈ R
N × R

k, be a real-valued function. Its
quasiconvexification W ∗(ξ) is defined as

W ∗(ξ) := inf
ϕ∈C∞

0
(Q;Rk)

∫

Q
W (ξ +Dϕ(y))dy,

where Q is the unit cube centered at 0.
Define, for any open subsetA of an open set Ω of R

N and any u inBV (Ω; Rk)

I(u,A) := inf
{un}

{

lim inf
n→+∞

[
∫

A
W (∇un)dx+HN−1(S(un) ∩A)

]
∣

∣

∣

∣

un ∈ SBV (A; Rk), un → u strongly in L1(A; Rk)

}

, (2.1)

J(u,A) :=

{

∫

AW
∗(∇u)dx+HN−1(S(u) ∩A) if u ∈ SBV (A; Rk)

+∞ otherwise
(2.2)

We propose to prove the following theorem:

Theorem 2.1 Assume that W (ξ) satisfies

α|ξ|p ≤W (ξ) ≤ β(δ + |ξ|p), ξ ∈ R
N × R

k, (2.3a)

|W (ξ) −W (η)| ≤ γ(1 + |η|p−1 + |ξ|p−1)|ξ − η|, ξ, η ∈ R
N × R

k, (2.3b)

where α, β, γ > 0, δ ≥ 0 and 1 < p < +∞. Then

J(u,Ω) ≤ I(u,Ω). (2.4)

Further, under the following additional assumption:

δ = 0 if Ω is unbounded, (2.3c)

J(u,Ω) = I(u,Ω).

Remark 2.2 In view of (2.3a), W ∗(ξ) also satisfies

α|ξ|p ≤W ∗(ξ) ≤ β(δ + |ξ|p), (2.5)

and as W is continuous, W ∗ is also continuous (see [Dacorogna 89]).
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Remark 2.3 If u ∈ SBV (Ω; Rk), then Theorem 2.1 is a statement about
the relaxation of

E(u,Ω) :=

∫

Ω
W (∇u)dx+HN−1(S(u)) (2.6)

in SBV (Ω; Rk) for the L1(Ω; Rk)-topology. In particular,

J(u,Ω) is L1(Ω; Rk)-sequentially lower semi-continuous in SBV (Ω; Rk).
(2.7)

Note that, in the light of Remark 2.2, a direct application of Theorem
4.5 in [Ambrosio 93a] to J(u,Ω) would yield the latter result (2.7), at least
whenever Ω is bounded.

Remark 2.4 As pointed out in Remark 4.7 of [Ambrosio 93a], the exis-
tence of minimizers for J(u,Ω), or I(u,Ω), on SBV (Ω; Rk) is not guaranteed
through the direct method of the Calculus of Variations because of the ab-
sence of L1-compactness of the minimizing sequences. Note, however, that
if a uniform L∞-bound is assumed on the minimizing sequence (for exam-
ple if the infimum is taken over SBV (Ω;K), where K is a compact subset
of R

k), then the minimizing sequence is immediately seen to be bounded
in BV (Ω; Rk) (hence compact in L1(Ω; Rk)) because the singular part Dsu
of the measure Du of a function u in SBV (Ω; Rk) has the following total
variation:

|Dsu|(Ω) =

∫

S(u)
|u+ − u−|(x)dHN−1(x),

hence
|Dsu|(Ω) ≤ 2‖u‖L∞(Ω)H

N−1(S(u)).

Proof of Theorem 2.1. The proof is divided into two steps. The first step
proves that J(u,Ω) ≥ I(u,Ω) while the second step proves that I(u,Ω) ≥
J(u,Ω).

Step1: J(u,Ω) ≥ I(u,Ω) if I(u,Ω) < +∞.

We may as well assume that J(u,Ω) < +∞, otherwise there is nothing
to prove. But then I(u,Ω) < +∞. Indeed u ∈ SBV (Ω; Rk) since J(u,Ω) <
+∞ and u is a test function for I(·,Ω). By virtue of (2.5), ∇u ∈ Lp(Ω) and
HN−1(S(u)) < +∞ and, in view of (2.3a), we conclude that

I(u,Ω) ≤
∫

Ω
W (∇u)dx+HN−1(S(u)) < +∞.
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Actually we will prove Lemma 2.5 below which only requires a weak-
ened form of hypothesis (2.3) (namely 1 ≤ p < +∞ if u ∈ SBV (Ω; Rk)).

Lemma 2.5 If (2.3a), (2.3b) are replaced by the following weakened hy-
potheses:

{

1 ≤ p < +∞ in (2.3a), (2.3b) when u ∈ SBV (Ω; Rk),
1 < p < +∞ otherwise,

(2.3)w

and if (2.3c) holds true, then I(u,Ω) ≤ J(u,Ω) whenever I(u,Ω) < +∞.

Remark 2.6 It will be proved in Lemma 2.14 below that if u ∈ BV (Ω,Rk)
and I(u,Ω) < +∞, then u ∈ SBV (Ω; Rk). Thus Lemma 2.5 actually states
that I(u,Ω) ≤ J(u,Ω) whenever I(u,Ω) < +∞ and 1 ≤ p < +∞.

Proof of Lemma 2.5. The proof requires five substeps. The analysis
is restricted to any bounded, open subset A of Ω and the last substep (Step
1-5) breaks free from this limitation. The first substep (Step 1-1) reduces the
study to the case where u ∈ BV (A; Rk) ∩ L∞(A; Rk) with I(u,Ω) < +∞.
The second substep (Step 1-2) operates a reduction of I(u,A) to a more
easily handled I∞(u,A) (see (2.1)∞ in Proposition 2.8 below) and further
reduces u to be an element of SBV (A; Rk) ∩ L∞(A,Rk) (see Remark 2.9
below). The third substep (Step 1-3) establishes that, for such u’s, I∞(u, ·)
is a Borel measure on A which is absolutely continuous with respect to the
sum of the Lebesgue measure on A and of the restriction of HN−1 to S(u).
In other words I∞(u,A) =

∫

A h dx+
∫

S(u)∩A g dHN−1, where h and g are the
associated densities. In the fourth substep (Step 1-4), h and g are proved to
be less than or equal to W ∗(∇u) and 1, respectively, which establishes that
I∞(v,A) ≤ J(u,A), and the last substep permits to conclude.

Step 1-1: The following proposition holds true:

Proposition 2.7 If A is a bounded, open subset of Ω and if, for every u in
BV (A; Rk) ∩ L∞(A; Rk) with I(u,A) < +∞, I(u,A) ≤ J(u,A), then

I(u,A) ≤ J(u,A)

whenever u ∈ BV (A; Rk) and I(u,A) < +∞.
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Proof of Proposition 2.7. We may assume that J(u,A) < +∞, otherwise
there is nothing to prove. Since I(u,A) < +∞, choose un ∈ SBV (A; Rk)
with















un → u strongly in L1(A; Rk),

∫

A
W (∇un) dx+HN−1(S(un) ∩A) < +∞.

(2.8)

Note that the latter inequality, together with the first inequality in (2.3a),
implies that ∇un ∈ Lp(A; Rk).

Define ϕq ∈W 1,∞
0 (Rk × R

k) as

ϕq(x) :=

{

x if |x| ≤ eq,
0 if |x| ≥ eq+1,

with |∇ϕq(x)| ≤ 1. Then, according to [Vol’pert 69], ϕq(un)(resp. ϕq(u))
belong to SBV (resp. BV )(A; Rk) ∩ L∞(A; Rk), and



























‖ϕq(un)‖L∞(A) ≤ eq,

S(ϕq(un)) ∩A ⊂ S(un) ∩A,

∇(ϕq(un))(x) = ∇ϕq(un(x)) ◦ ∇un(x), for a.e. x in Ω.

(2.9)

Furthermore,
ϕq(un) → ϕq(u) strongly in L1(A; Rk). (2.10)

But, according to (2.8), (2.9), and upon recalling the second inequality in
(2.3a),

∫

A
W (∇ϕq(un)) +HN−1(S(ϕq(un)) ∩A)

≤ β(δmeas(A) +

∫

A
|∇un|

pdx) +HN−1(S(un) ∩A) < +∞. (2.11)

By virtue of (2.9) and (2.10), {ϕq(un)} is an admissible sequence in the
definition of I(ϕq(u);A) and, in view of (2.11), I(ϕq(u);A) < +∞. Thus,
by hypothesis

I(ϕq(u);A) ≤ J(ϕq(u);A). (2.12)

Now, as q tends to ∞,

ϕq(u) → u strongly in L1(A; Rk),
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while, as we have already seen, ϕq(u) belongs to BV (A; Rk) and
I(ϕq(u);A) < +∞. Since, by its very definition, I(·, A) is sequentially
L1− lower semicontinuous on BV (see Remark 2.3 for a remark along these
lines), we conclude that

I(u,A) ≤ lim inf
q→+∞

I(ϕq(u);A).

In view of (2.12), it remains to show that

lim inf
q→+∞

J(ϕq(u);A) ≤ J(u,A). (2.13)

But
HN−1(S(ϕq(u)) ∩A) ≤ HN−1(S(u) ∩A), (2.14)

and, appealing to (2.3) and to Remark 2.2

∫

A
W ∗(∇ϕq(u))dx =

∫

|u(x)|≤eq
W ∗(∇u)dx+

∫

|u(x)|>eq
W ∗(∇ϕq(u))dx

≤
∫

A
W ∗(∇u)dx+ β

∫

|u(x)|>eq
(δ + |∇u|p)dx. (2.15)

Since ∇u belongs to Lp(A; Rk) (J(u,A) < +∞) and u belongs to L1(A; Rk),

lim
q→+∞

∫

|u(x)|>eq
(δ + |∇u|p)dx = 0,

which, in view of (2.14), (2.15), proves (2.13) and completes the proof of
Proposition 2.7.

Proposition 2.7 enables us to limit our investigation to the case where
u belongs to BV (A; Rk) ∩ L∞(A; Rk) with I(u,A) < +∞. For such u’s a
convenient reduction of I(u,A) may be performed. This is the object of
Step 1-2.

Step 1-2. The following proposition holds true:

Proposition 2.8 If u ∈ BV (A; Rk) ∩ L∞(A; Rk) and if I(u,A) < +∞,
where A is a bounded, open subset of Ω, then

I(u,A) = I∞(u,A)
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with

I∞(u,A) := inf
{un}

{

lim inf
n→+∞

[
∫

A
W (∇un)dx+HN−1(S(un) ∩A)

]∣

∣

∣

∣

un ∈ SBV (A; Rk) ∩ L∞(A; Rk), un → u

strongly in L1(A; Rk), sup
n

‖un‖L∞(A) ≤ C < +∞

}

.(2.1)∞

Proof of Proposition 2.8. Obviously I∞(u,A) ≥ I(u,A). The proof
that I(u,A) ≥ I∞(u,A) follows that of a related result in [Celada Dal

Maso 93] or [Barroso Bouchitté Buttazzo Fonseca 93]; see Lemma
3.7 of the latter reference. It essentially consists in truncating a minimizing
sequence {un} for I(u,A) at a given distance from the origin. Specifically,
introduce the following radial truncations ϕi ∈ C1

0 (Rk × R
k) defined as

ϕi(x) :=

{

x if |x| < ei,
0 if |x| ≥ ei+1,

and |∇ϕi(x)| ≤ 1. Note that ϕi is a Lipschitz function with Lipschitz
constant 1. For a fixed ǫ > 0, consider a sequence un in SBV (Ω; Rk) such
that

un → u strongly in L1(A; Rk),

I(u,A) +
ǫ

2
≥ lim

n→∞

[
∫

A
W (∇un)dx+HN−1(S(un) ∩A)

]

. (2.16)

Define
win(x) := ϕi(un(x)).

Then, according to [Vol’pert 69], win is in SBV (A; Rk) and



















‖win‖L∞(A) ≤ ei,

S(win) ∩A ⊂ S(un) ∩A,
∇win(x) = ∇ϕi(un(x)) ◦ ∇un(x), for a.e. x in Ω.

(2.17)

If i is large enough, then ‖u‖L∞(A) ≤ ei, thus u = ϕi(u). Then

‖win − u‖L1(A) = ||ϕi(wn) − ϕi(u)||L1(A)

≤ ‖un − u‖L1(A). (2.18)
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The sequence {ϕi} is rearranged so that the above inequality holds true for
every i ≥ 1. Furthermore, in view of (2.17),

∫

A
W (∇win)dx =

∫

|un(x)|≤ei
W (∇un)dx+

∫

ei<|un(x)|≤ei+1

W (∇ϕi ◦ ∇un)dx

+

∫

|un(x)|>ei+1

W (0)dx.

But, by virtue of the second inequality in (2.3a),

∫

ei<|un(x)|≤ei+1

W (∇ϕi ◦ ∇un)dx+

∫

|un(x)|>ei+1

W (0)dx

≤ βδmeas{|un(x)| > ei} + β

∫

ei<|un(x)|≤ei+1

|∇un|
pdx

≤
β

ei
δ‖un‖L1(A) + β

∫

ei<|un(x)|≤ei+1

|∇un|
pdx.

The above inequalities, together with (2.17), imply that, for any integer
M > 0,

M
∑

i=1

[
∫

A
W (∇win)dx+HN−1(S(win) ∩A)

]

≤M

[
∫

A
W (∇un)dx

+HN−1(S(un) ∩A)

]

+ βδ‖un‖L1(A)

M
∑

i=1

1

ei
+ β

∫

A
|∇un|

pdx. (2.19)

Note that, since un converges (strongly) to u in L1(A; Rk),

‖un‖L1(A) ≤ C < +∞,

while the first inequality in (2.3a) and (2.16) yield that, for n large enough,

∫

A
|∇un|

pdx ≤ C < +∞.

Consequently (2.19) reads as

1

M

M
∑

i=1

[
∫

A
W (∇win)dx+HN−1(S(win) ∩A)

]

≤
∫

A
W (∇un)dx

+HN−1(S(un) ∩A) +
βδC

M

M
∑

i=1

1

ei
+
βC

M
.
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Upon choosing M = M(ǫ) large enough (independently of n) we conclude
that

1

M

M
∑

i=1

[
∫

A
W (∇win)dx+HN−1(S(win) ∩A)

]

≤

∫

A
W (∇un)dx+HN−1(S(un) ∩A) +

ǫ

2
.

Thus there exists i(n) ∈ {1, ...,M} such that

∫

A
W (∇wi(n)

n )dx+HN−1(S(wi(n)
n ) ∩A) ≤

∫

A
W (∇un)dx+HN−1(S(un) ∩A) +

ǫ

2
. (2.20)

Set ūn := w
i(n)
n and recall (2.16), (2.17), (2.18) and (2.20); the sequence ūn

satisfies


























ūn → u strongly in L1(A; Rk),

‖ūn‖L∞(A) ≤ eM(ǫ),

I(u,A) + ǫ ≥ lim sup
n→+∞

∫

A
W (∇ūn)dx+HN−1(S(ūn) ∩A),

which was the sought result. The proof of Proposition 2.8 is complete.

Now, by virtue of Proposition 2.8, if u is an element of
BV (A; Rk) ∩ L∞(A; Rk) and I(u,A) < +∞, there exists a sequence {un} in
SBV (A; Rk) ∩ L∞(A; Rk) such that























































sup
n

‖un‖L∞(A) ≤ C < +∞,

un → u strongly in L1(A; Rk),

sup
n
HN−1(S(un) ∩A) ≤ C < +∞,

sup
n

‖∇un‖Lp(A) ≤ C < +∞.

(2.21)

Thus, if p > 1, a direct application of Theorem 2.1 in [Ambrosio 89a]
implies that u ∈ SBV (A; Rk), while, if p = 1, u ∈ SBV (A; Rk) in view of
hypothesis (2.3)w.
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Remark 2.9 In conclusion of this step, we have thus established that, if A
is a bounded, open subset of Ω, if u ∈ BV (A; Rk) with I(u,A) < +∞ and if
(2.3a)w holds true, then I(u,A) ≤ J(u,A), provided that I∞(v,A) ≤ J(v,A)
whenever v ∈ SBV (A; Rk) ∩ L∞(A; Rk)(with I(v,A) < +∞).

Step 1-3. The following proposition holds true:

Proposition 2.10 Assume that u ∈ SBV (A; Rk) ∩ L∞(A; Rk) and that
E(u,A) < +∞, where A is a bounded, open subset of Ω(recall (2.6) for a
definition of E). Then I∞(u, ·) extends to a nonnegative Radon measure on
A which is absolutely continuous with respect to LN + HN−1⌊S(u), where
LN stands for the Lebesgue measure on A and HN−1⌊S(u) denotes the re-
striction of the (N − 1)−Hausdorff measure to S(u).

Remark 2.11 In the context of Proposition 2.10, if E(u,A) < +∞, (2.3a)
implies that J(u,A) < +∞ and, because u ∈ SBV (A; Rk), I(u,A) < +∞.
For the present purpose, we could have as well assumed that J(u,A) < +∞.

Proof of Proposition 2.10. Note that, in view of the second inequality
in (2.3) (or rather in (2.3)w), for every open subset B of A,

I∞(u,B) ≤ β

∫

B
(δ + |∇u|p)dx+HN−1⌊S(u)(B).

We now propose to prove that I∞(u, ·) is the trace on A := {B open |B ⊂
A} of a Borel regular measure on A. To this effect, De Giorgi–Letta’s
criterion [De Giorgi Letta 77] is applied; four conditions must be fulfilled
for any elements B,C of A, namely,

a) I∞(u,B) ≤ I∞(u,C), if B ⊂ C,

b) I∞(u,B ∪ C) = I∞(u,B) + I∞(u,C), if B ∩ C = ∅,

c) I∞(u,B ∪ C) ≤ I∞(u,B) + I∞(u,C),

d) I∞(u,B) = sup{I∞(u,C)|C ⊂⊂ B}.

Conditions a) and b) are trivially satisfied by I∞(u, ·). To establish c) and
d), we follow the method indicated in [Ambrosio Mortola Tortorelli

91].

First note that if C ∈ A, then for any fixed ǫ > 0, there exists Cǫ ⊂⊂ C
such that

I∞(u,C\C̄ǫ) ≤ E(u,C\C̄ǫ) ≤ ǫ. (2.22)

15



Indeed we choose Cǫ such that

E(u,C\C̄ǫ) =

∫

C\C̄ǫ

W (∇u)dx+HN−1(S(u) ∩ (C\C̄ǫ)) ≤ ǫ,

which is always possible since W (∇u) ∈ L1(C; Rk) and HN−1(S(u) ∩ C) <
+∞; (2.22) follows immediately by taking un = u in the definition of
I∞(u,C\C̄ǫ) and recalling that u ∈ SBV (A; Rk). If c) holds true, then
d) holds true because, by virtue of (2.22), for any ǫ > 0, we are at liberty to
choose Bǫ ⊂⊂ Cǫ ⊂⊂ B such that

I∞(u,B\B̄ǫ) ≤ ǫ.

Then, since
B ⊂ (B\B̄ǫ) ∪ Cǫ,

condition c) implies that

I∞(u,B) ≤ I∞(u,B\B̄ǫ) + I∞(u,Cǫ) ≤ I∞(u,Cǫ) + ǫ.

Letting ǫ tend to 0 yields condition d).
It remains to establish c). To this effect, B ∪ C is decomposed, for any
t ∈ (0, 1), into

Bt := {x ∈ B ∪ C| t dist(x,B\C) < (1 − t) dist(x,C\B)},

Ct := {x ∈ B ∪ C| t dist(x,B\C) > (1 − t) dist(x,C\B)},

St := (B ∪ C)\(Bt ∪ Ct).

Since ∪t∈(0,1)St ⊂ B ∪ C and I(u,B ∪ C) < +∞, we have

LN ( ∪
t∈(0,1)

St) +HN−1(S(u) ∩ ( ∪
t∈(0,1)

St)) < +∞. (2.23)

The sets St are pairwise disjoint; thus (2.23) implies that

∑

t∈(0,1)

[LN (St) +HN−1(S(u) ∩ St)] < +∞,

from which we infer the existence of t0 ∈ (0, 1) such that

LN (St0) +HN−1(S(u) ∩ St0) = 0. (2.24)
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For a given ǫ > 0, (2.22) permits to consider Bǫ ⊂⊂ B′
ǫ ⊂⊂ Bt0 and Cǫ ⊂⊂

C ′
ǫ ⊂⊂ Ct0 such that

E(u,Bt0\B̄ǫ) ≤
ǫ

2
, E(u,Ct0\C̄ǫ) ≤

ǫ

2
.

Then, by virtue of (2.24), and also because Bt0 ∩ Ct0 = ∅, we obtain

E(u, (B ∪ C)\(B̄ǫ ∪ C̄ǫ)) =

∫

Bt0
\B̄ǫ

W (∇u)dx

+

∫

Ct0
\C̄ǫ

W (∇u)dx+HN−1(S(u) ∩ (Bt0\B̄ǫ))

+ HN−1(S(u) ∩ (Ct0\C̄ǫ))

= E(u,Bt0\B̄ǫ) +E(u,Ct0\C̄ǫ) ≤ ǫ,

from which we conclude that

I∞(u, (B ∪ C)\(B̄ǫ ∪ C̄ǫ)) ≤ ǫ. (2.25)

Assume that
I∞(u,C) ≤ I∞(u,D) + I∞(u,C\Ē), (2.26)

whenever C,D,E are elements of A such that E ⊂⊂ D ⊂⊂ C. Then

I∞(u,B ∪ C) ≤ I∞(u,B′
ǫ ∪ C

′
ǫ) + I∞(u, (B ∪ C)\(B̄ǫ ∪ C̄ǫ)).

Since B′
ǫ ∩ C

′
ǫ = ∅, conditions a), b) together with (2.25) yield

I∞(u,B ∪ C) ≤ I∞(u,B) + I∞(u,C) + ǫ

and c) is obtained upon letting ǫ tend to zero.

It remains to prove (2.26). Note that I(u,A) < +∞ because E(u,A) <
+∞ and u ∈ SBV (A; Rk), thus is a valid test function in (2.1)∞. For a
given ǫ > 0 there exists, according to Proposition 2.8, a sequence {un} in
SBV (C\Ē; Rk) ∩ L∞(C\Ē; Rk) satisfying







































un → u strongly in L1(C\Ē; Rk),

sup
n

‖un‖L∞(C\Ē) ≤ C ≤ +∞,

I∞(u,C\Ē) + ǫ ≥ lim
n→+∞

[
∫

C\Ē
W (∇un)dx+HN−1(S(un) ∩ (C\Ē))

]

,
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as well as a sequence {vn} in SBV (D; Rk) ∩ L∞(D; Rk) such that



































vn → u strongly in L1(D; Rk),

sup
n

‖vn‖L∞(D) ≤ C,

I∞(u,D) + ǫ ≥ lim
n→+∞

[

∫

D
W (∇un)dx+HN−1(S(vn) ∩D)].

The L1− convergence and the uniform L∞− estimate on both un and vn
actually imply that

un − vn → 0 strongly in Lp(D\Ē; Rk). (2.27)

We propose to construct a sequence wn over the whole domain C by con-
necting un to vn across D\Ē. To this end, fix ρ > 0 and Dρ ⊂ D open
such that meas(Dρ \E) < ρ and the set Dρ\Ē is partitioned into two layers

S
(i)
1 , i = 1, 2, defined as

S
(1)
1 := {x ∈ Dρ\Ē| 0 < dist(x, ∂E) ≤

1

2
dist(∂E,RN \Dρ)}

S
(2)
1 := {x ∈ Dρ\Ē|

1

2
dist(∂E,RN \Dρ) < dist(x, ∂E) ≤ dist(∂E,RN \Dρ)}.

Then, for every n, either S1 = S
(1)
1 or S1 = S

(2)
1 is such that

∫

S1

W (∇un)dx+HN−1(S(un) ∩ S1)

+

∫

S1

W (∇vn)dx+HN−1(S(vn) ∩ S1) ≤
M

2
(2.28)

where

+∞ > M = sup
n

[
∫

D\Ē
(W (∇un) +W (∇vn))dx+HN−1(S(un) ∩ (D\Ē))

+HN−1(S(vn) ∩ (D\Ē))

]

.

This is obvious by contradiction. Consequently one of the layers, denoted

by S1, must satisty (2.28) for a subsequence {u
(1)
n , v

(1)
n } of {un, vn}. Fur-

thermore, by virtue of (2.27), {u
(1)
n , v

(1)
n } may be chosen such that

1

|β1 − α1|p

∫

S1

|u(1)
n − v(1)

n |pdx <
1

2
.
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This procedure is repeated recursively and it yields a sequence of layers

Sj := {x ∈ Dρ\Ē| 0 < αj < dist(x, ∂E) < βj}

with |βj − αj | ց 0 and


















































∫

Sj

W (∇u(j)
n )dx+HN−1(S(u(j)

n ) ∩ Sj)+

∫

Sj

W (∇v(j)
n )dx+HN−1(S(v(j)

n ) ∩ Sj) ≤
M

j + 1
,

1

|βj − αj |p

∫

Sj

|u(j)
n − v(j)

n |pdx <
1

j + 1
.

(2.29)

Take ϕj ∈ C∞
0 (C) with 0 ≤ ϕj ≤ 1, ‖∇ϕj‖L∞(Dρ\Ē) ≤

1
|βj−αj |

and

ϕj(x) ≡ 1 if x ∈ E or dist(x, ∂E) ≤ αj ,

ϕj(x) ≡ 0 if x 6∈ E and dist(x, ∂E) ≥ βj ,

and set
wj(x) := (1 − ϕj(x))u

(j)
j (x) + ϕj(x)v

(j)
j (x).

Certainly

‖wj − u‖L1(C;Rk) ≤
∫

C\Ē
|u

(j)
j − u|dx+

∫

D
|v

(j)
j − u|dx,

thus,
wj → u strongly in  L1(C,Rk). (2.30)

Furthermore,

HN−1(S(wj) ∩C) ≤ HN−1(S(u
(j)
j ) ∩ (C\Ē)) +HN−1(S(v

(j)
j ) ∩D), (2.31)

while, since

∇wj = ∇u
(j)
j (1 − ϕj) + ∇v

(j)
j ϕj + (v

(j)
j − u

(j)
j ) ⊗∇ϕj ,

we obtain, upon recalling the second inequality in (2.3a) (or rather (2.3a)w)
∫

C
W (∇wj)dx ≤

∫

C\Ē
W (∇u

(j)
j )dx+

∫

D
W (∇v

(j)
j )dx

+ β′
∫

Sj

{δ + |∇u
(j)
j |p + |∇v

(j)
j |p}dx

+ β′
∫

Sj

{δ +
1

|βj − αj |p
|v

(j)
j − u

(j)
j |p}dx
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for some β′ > 0. Thus, using (2.29) and appealing this time to the first
inequality in (2.3a)w,

∫

C
W (∇wj)dx ≤

∫

C\Ē
W (∇u

(j)
j )dx+

∫

D
W (∇v

(j)
j )dx

+β′
{

2δ|Sj | +
1

j + 1
+

2M

j + 1

}

. (2.32)

Collecting (2.30), (2.31), (2.32) and passing to the limit in j yields

I∞(u,C) ≤ I∞(u,C\Ē) + I∞(u,D) + 2ǫ

+ β′ lim sup
j→+∞

{

2δρ+
1

j + 1
(2M + 1)

}

= I∞(u,C\Ē) + I∞(u,D) + 2ǫ+ 2β′δρ

and (2.26) is obtained upon letting ρ and ǫ tend to 0. Thus I∞(u, ·) extends
to a nonnegative finite Radon measure on A.

Since E(u,A) < +∞ then HN−1(S(u) ∩ A) is finite. Thus
HN−1⌊S(u) is a Radon measure on A. Taking u as a test function for
I∞(u,A), we have I∞(u,A) ≤ E(u,A) which implies that I∞(u, ·) is abso-
lutely continuous with respect to LN + HN−1⌊S(u). The Lebesgue decom-
position theorem guarantees the existence of two densities h and g which
are, respectively, Lebesgue measurable on A and HN−1⌊S(u)−measurable
on A, such that

I∞(u, ·) = hLN + gHN−1⌊S(u). (2.33)

Furthermore h and g are the Radon-Nikodym derivative of I∞(u, ·) with
respect to LN and HN−1⌊S(u), respectively, i.e., if Q(x0, ǫ) denotes, for a
given x0 in A, the cube of side ǫ centered at x0, then

h(x0) = lim
ǫ→0+

I∞(u,Q(x0, ǫ))

ǫN
, for LN−a.e. x0 in A, (2.34)

g(x0) = lim
ǫ→0+

I∞(u,Q(x0, ǫ))

HN−1(S(u) ∩Q(x0, ǫ))
(2.35)

for HN−1−a.e. x0 in S(u) ∩A

and the proof of Proposition 2.10 is complete. (See e.g. [Evans Gariepy

92] Subsection 1.6.2., Theorem 2.3. Note that in that reference the results
are expressed in terms of small balls instead of small cubes.)
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We assume now that u ∈ SBV (A; Rk)∩L∞(A; Rk) and that J(u,A) < +∞,
otherwise there is nothing to prove. Then, according to Remark 2.11, Propo-
sition 2.10 still holds true. We propose to show in the next substep that











h(x) ≤W ∗(∇u(x)), LN − a.e. in A,

g(x) ≤ 1, HN−1 − a.e. inA,

from which it will be immediately concluded that

I∞(u,A) ≤ J(u,A).

Step 1-4. The proof that g(x) ≤ 1, HN−1−a.e. in S(u) ∩ A is straightfor-
ward. Indeed, since u ∈ SBV (A; Rk) ∩ L∞(A; Rk),

I∞(u,B) ≤
∫

B
W (∇u)dx+HN−1(S(u) ∩B),

where B is an arbitrary open subset of A, and consequently for all Borel
subsets B. It suffices to consider B to be an arbitrary Borel subset of S(u)
to conclude that g(x) ≤ 1 HN−1 − a.e. inA.

Remark 2.12 The mutually singular character of LN and HN−1⌊S(u) also
implies that

lim
ǫ→0+

HN−1(S(u) ∩Q(x0, ǫ))

ǫN
= 0,LN − a.e. in A. (2.36)

This relation will be used thereafter.

It remains to show that h(x) ≤W ∗(∇u(x)), LN−a.e. in A. Since J(u,A) <
+∞, ∇u ∈ Lp(A; Rk) and for LN−a.e. x0 in A, (2.34), (2.36) hold true
together with

lim
ǫ→0+

1

ǫN

∫

Q(x0,ǫ)
|∇u(x) −∇u(x0)|pdx = 0 (2.37)

Note that (2.37) is merely a statement about the Lebesgue points of ∇u. The
argument uses a blow up technique similar to that in [Fonseca Müller

92]. Fix a suitable x0 in A, satisfying (2.34), (2.36) and (2.37). For any
positive integer n, there exists, by the very definition of W ∗, an element
ϕn ∈ C∞

0 (Q,Rk) such that

W ∗(∇u(x0)) +
1

n
≥

∫

Q
W (∇u(x0) + ∇ϕn(x))dx.
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Remark that, by virtue of the first inequality in (2.3) (or rather (2.3)w)

‖∇ϕn‖Lp(A) ≤ C < +∞.

Extend ϕn by Q−periodicity to C∞(RN ; Rk) and set

umn (x) := ∇u(x0)x+
1

m
ϕn(mx).

Then,
∫

Q
W (∇umn )dx =

1

mN

∫

mQ
W (∇u(x0) + ∇ϕn(x))dx

=

∫

Q
W (∇u(x0) + ∇ϕn(x))dx

≤ W ∗(∇u(x0)) +
1

n
.

Further, as m tends to +∞,

umn → ∇u(x0)x strongly in L1(Q; Rk),

and a straightforward diagonalization process yields a sequence vn (= u
m(n)
n )

of smooth functions such that


























































sup
n

‖vn‖L∞(Q) ≤ C,

sup
n

‖∇vn‖Lp(Q) ≤ C,

vn → ∇u(x0)x strongly in L1(Q;Rk),

∫

Q
W (∇vn)dx→W ∗(∇u(x0)).

(2.38)

For a given ǫ > 0, set

uǫn(x) := u(x) + ǫ

[

vn(
x− x0

ǫ
) −∇u(x0)(

x− x0

ǫ
)

]

.

Then, because u belongs to L∞(A; Rk) and by virtue of (2.38),






























sup
n

‖uǫn‖L∞(Q(x0,ǫ)) ≤ C,

uǫn → u strongly in L1(Q(x0, ǫ); R
k),

HN−1(S(uǫn) ∩Q(x0, ǫ)) = HN−1(S(u) ∩Q(x0, ǫ)).
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The sequence uǫn is a valid sequence of test function for I∞(u,Q(x0, ǫ)) in
(2.1)∞ and we obtain

1

ǫN
I∞(u,Q(x0, ǫ)) ≤ lim inf

n→+∞

{

1

ǫN

∫

Q(x0,ǫ)
W (∇uǫn)dx+

1

ǫN
HN−1(S(u) ∩Q(x0, ǫ))

}

= lim inf
n→+∞

∫

Q
W (∇u(x0 + ǫx) −∇u(x0) + ∇vn(x))dx

+
1

ǫN
HN−1(S(u) ∩Q(x0, ǫ)).

The limit (2.36) in Remark (2.12) is recalled and we obtain

lim
ǫ→0+

1

ǫN
I∞(u,Q(x0, ǫ))

≤ lim sup
ǫ→0+

lim inf
n→+∞

∫

Q
W (∇u(x0 + ǫx) −∇u(x0) + ∇vn(x))dx.(2.39)

We now appeal, for the first time in the proof of Lemma 2.5, to (2.3b) (or
rather (2.3b)w). Then

lim
ǫ→0+

1

ǫN
I∞(u,Q(x0, ǫ)) ≤ lim sup

ǫ→0+

lim inf
n→+∞

[
∫

Q
W (∇vn)dx+

γ

∫

Q
(1 + |∇vn(x)|p−1 + |∇u(x0 + ǫx) −∇u(x0)|p−1)|∇u(x0 + ǫx) −∇u(x0)|dx

]

≤ lim sup
ǫ→0+

lim inf
n→+∞

[
∫

Q
W (∇vn)dx+ C

(
∫

Q
|∇u(x0 + ǫx) −∇u(x0)|pdx

)1/p

(

1 + ‖∇vn‖
p−1
Lp(Q) + |∇u(x0)|p−1 + ‖∇u‖p−1

Lp(Q(x0,ǫ))

)]

.

We have used Hölder’s inequality to pass from the second to the third in-
equality. Recalling (2.38), we conclude that

lim
ǫ→0+

1

ǫN
I∞(u,Q(x0, ǫ)) ≤

W ∗(∇u(x0)) + C lim sup
ǫ→0+

(
∫

Q
|∇u(x0 + ǫx) −∇u(x0)|pdx

)1/p

≤

W ∗(∇u(x0)) + C lim sup
ǫ→0+

(

1

ǫN

∫

Q(x0,ǫ)
|∇u(x) −∇u(x0)|pdx

)1/p

which, in view of (2.34), (2.37), finally yields

h(x0) ≤W ∗(∇u(x0)),
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which was the desired result. We have thus proved that

I∞(u,A) ≤ J(u,A),

for all u’s in SBV (A; Rk) ∩ L∞(A; Rk) (if J(u,A) = +∞ there is nothing
to prove ) and, according to Remark 2.9, this implies that, for any v in
BV (A; Rk), I(v,A) ≤ J(v,A) whenever (2.3)w holds true, and I(v,A) <
+∞.
Step 1-5. If Ω is bounded, then we can take A = Ω and Lemma 2.5 is proved.
If not we assume firstly that u belongs to Lp(Ω; Rk) with I(u,Ω) < +∞ and
J(u,Ω) < +∞. Consider a sequence Ωn of compactly embedded bounded
open sets with ∪Ωn = Ω, and an associated sequence ϕn of elements of
C∞

0 (Ω; Rk) with ϕn ≡ 1 on Ωn, 0 ≤ ϕn ≤ 1 and |∇ϕn(x)| ≤ 1. Set

un := ϕnu.

Then un ∈ BV (Ω; Rk).
Further supp{un} ⊂ An bounded open subset of Ω. Thus, obviously,

{

I(un,Ω) = I(un, An),
J(un,Ω) = J(un, An).

Note that I(un,Ω) is easily checked to be finite since u ∈ Lp(Ω; Rk). Then,
according to the previous step,

I(un, An) ≤ J(un, An),

hence
I(un,Ω) ≤ J(un,Ω).

But, on the other hand, ∇u ∈ Lp(Ω; Rk) in view of (2.3a)w, so that, by
virtue of (2.3c),

J(un,Ω) ≤ J(u,Ω) + β

∫

{ϕn(x)<1}
|∇(ϕnu)|pdx

≤ J(u,Ω) + C
∫

{ϕn(x)<1}
(|u|p + |∇u|p)dx.

Since ϕn converges to 1 a.e. in Ω as n tends to +∞, the dominated conver-
gence theorem yields

lim sup
n→+∞

J(un,Ω) ≤ J(u,Ω). (2.40)
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On the other hand, the dominated convergence theorem also implies that

un → u strongly in L1(Ω; Rk)

as n → +∞. Thus the very definition of I(·,Ω) as a relaxed functional, in
the strong L1(Ω; Rk)−topology, of E(·,Ω) implies that

I(u,Ω) ≤ lim inf
n→+∞

I(un,Ω),

which, together with (2.40), yields the desired inequality.
If u does not belong to Lp(Ω; Rk) but I(u,Ω) < +∞, it is approximated
by ϕq(u), with ϕq as in the proof of Proposition 2.7. The proof that
I(u,Ω) ≤ J(u,Ω) is then identical to that of Proposition 2.7 upon replacing
A by Ω and dropping the term βδ measA in (2.11) and β

∫

{|u(x)>q} δdx in
(2.15), because δ = 0 when Ω is unbounded.
The proof of Lemma 2.5 is complete.

Step 2. We will prove the following

Lemma 2.13 Under the only hypothesis (2.3), for any u ∈ BV (A; Rk)

I(u,Ω) ≥ J(u,Ω).

Proof of Lemma 2.13. We are at liberty to assume that I(u,Ω) < +∞
otherwise there is nothing to prove.

Let un ∈ SBV (Ω; Rk) be such that, as n tends to +∞,

un → u strongly in L1(Ω; Rk),

E(un,Ω) =

∫

Ω
W (∇un)dx+HN−1(S(un) ∩ Ω) ≤ C < +∞,

I := lim
n→+∞

E(un,Ω).

Our goal is to prove that
I ≥ J(u,Ω).

The result announced in Lemma 2.13 is a direct consequence of Lemma
2.14 below and of a lower semi-continuity result of Ambrosio [Ambrosio

93a].

Lemma 2.14 If I(u,Ω) < +∞ then u ∈ SBV (Ω; Rk).
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Proof. Consider the family of cut-off functions ϕi introduced in the proof
of Proposition 2.8. By (2.17) and (2.3a) we have

sup
n

∫

Ω
|∇(ϕi(un))|pdx+HN−1(S(ϕi(un)) ∩ Ω) < +∞

and using the compactness theorem in SBV (see [Ambrosio 89a]) we ex-
tract a subsequence

ϕi(unj
) → v in L1(Ω,Rk),

where v ∈ SBV (Ω; Rk). On the other hand, as unj
→ u strongly in

L1(Ω,Rk), we have

v = ϕi(u) ∈ SBV (Ω; Rk) for all positive integer i.

Using the chain rule for distributional derivatives (see [Ambrosio Dal

Maso 90])
0 = C(ϕi(u)) = ∇ϕi(ũ)C(u) inΩ \ S(u), (2.41)

where, for x 6∈ S(u), the approximate limit ũ(x) of u at x is the common
value of u+(x), u−(x). As ũ(x) is a Borel function (see [Evans Gariepy

92], Lemma 1, Section 5.9), the sets

Em := {x ∈ Ω||ũ(x)| < m}

are Borel sets and |C(u)| = 0 if and only if

|C(u)|(Em) = 0 for all positive integer m.

Fix an integer number m and let i > m. By (2.42)

0 = |∇ϕi(ũ)C(u)(Em)|

= |IC(u)(Em)|

= |C(u)|(Em),

where I is the identity matrix in R
k × R

k.

Finally, since u ∈ SBV (Ω; Rk), Ambrosio’s lower semicontinuity theo-
rem (see [Ambrosio 93a]) yields

I = lim
n→+∞

∫

Ω
W (∇un)dx+HN−1(S(un) ∩ Ω)

≥ lim inf
n→+∞

∫

Ω
W ∗(∇un)dx+HN−1(S(un) ∩ Ω)

≥
∫

Ω
W ∗(∇u)dx+HN−1(S(u) ∩ Ω)

= J(u,Ω)
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which completes the proof of Lemma 2.13.

Lemma 2.5 and 2.13 coalesce into Theorem 2.1.

3 Stable damage and fracture evolution in a brit-

tle elastic continuum

This section is devoted to the investigation of a model of evolution for a
continuum that undergoes both damage and fracture. The proposed model
results in a time indexed sequence of minimization problems, the energy
functionals of which fit squarely within the class of functionals addressed in
the previous section.

Specifically the model is a generalization of that introduced in [Franc-

fort Marigo 93]. An elastic body occupying the open connected domain Ω
of R

N , 1 ≤ N ≤ 3, is considered, and its evolution is monitored for discrete
times

0 = t0 ≤ t1 ≤ · · · ≤ tI = t.

At time t0 = 0 the body is assumed to be undamaged and crack free and
a loading process is imposed upon it over the time interval [0, t]. For the sake
of simplicity we assume that the loading is a body loading, in other words
the entire loading process is characterized by a sequence {fi; 1 ≤ i ≤ I} of
body forces whose precise regularity will be given below.

In the absence of self-healing the cracks will grow with time; thus the
crack free part of the body is assumed to be a decreasing sequence {Ωi; 0 ≤
i ≤ I} of bounded, open subsets of Ω with Ω0 = Ω. The body forces fi will
be assumed to belong to L∞(Ωi−1; RN ). At each (discretized) time ti, i ≥ 1,
and at each point x in Ωi, the elastic energy density can take two values
Wu(ξ), or Wd(ξ), with

β(1 + |ξ|p) ≥Wu(ξ) ≥Wd(ξ) ≥ α|ξ|p, ξ ∈ R
N2

, (3.1a)

Wu and Wd are quasiconvex, (3.1b)

with 1 < p < +∞ and 0 < α ≤ β < +∞. In view of (3.1b), Wu and Wd

are continuous ([Dacorogna 89, Fonseca 88]). Moreover, it was proven
in [Marcellini 85] that (3.1a) and (3.1c) imply that

|Wu(ξ) −Wu(η)|(resp. |Wd(ξ) −Wd(η)|) ≤

β(1 + |ξ|p−1 + |η|p−1)|ξ − η|, (ξ, η) ∈ R
N2

.
(3.1c)
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The density Wu is that of the undamaged material while Wd is that of
the damaged material. In other words, if χi(x) denotes the characteristic
function of the damaged part of Ωi−1, the elastic energy density of the
material occupying Ωi−1 is

Wi(x, ξ) := (1 − χi(x))Wu(ξ) + χi(x)Wd(ξ) (3.2)

at the time ti.

Remark 3.1 A mechanically inclined reader might challenge the form of
the (un)damaged elastic energies, and most notably the growth condition
which excludes energies that would blow up as detξ goes to 0+, a nonlinear
elastic must. As is usual in the literature pertaining to equilibrium problems
for multiple integrals, we firstly address the case where the energy densities
are finite. The results for finite quasiconvex integrands are often not trivial
to obtain and so we must deal with these first, in the hope that the analysis
will give us some insight into the more general problem.

We remark that our hypotheses on the form of the elastic energies also
exclude the case of linearized elasticity because pointwise coercivity in the
sense of (3.1a) is never satisfied by even the most innocuous linearly elastic
materials. Our framework is not to be construed as extending to the case
where the energies are functions of the symmetrized gradient e = 1

2(ξ + ξT )
because the correct functional space is not BV anymore, nor its offspring
SBV , but BD – the space of bounded deformation – for which very little is
known at this juncture.

In conclusion a mechanically rigid reader will most certainly be dis-
satisfied with the model as it stands while a more lenient one will merely
interject that it is indeed a weak generalization of the model proposed in
[Francfort Marigo 93] since it does not even encompass the original
model. We are fairly confident that a better understanding of spaces like
BD would provide the missing ingredient, although such a statement is a
mathematical syllogism which in plainer language should be labelled a leap
of faith.

The evolution of the damage process is described through the evolution of
χi(x). Because damage is irreversible, χj(x) = 1 whenever χi(x) = 1, j ≥ i
and x ∈ Ωj−1. Furthermore the following yield criterion governs the process:
for x ∈ Ωi−1, χi(x) = 0 provided that the gradient of the transformation at
that part and up to that time—namely {∇uk(x), k ≤ i} where uk(x) is the
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deformation field on Ωk−1 at time tk—has never wandered outside an open

subset R of R
N2

defined as

R := {ξ ∈ R
N2

|Wu(ξ) −Wd(ξ) < K}. (3.3)

In (3.3), K is a characteristic constant of the material and it represents
the rate of released energy when passing from an undamaged to a damaged
configuration.

The evolution law for χi(x) becomes, for x ∈ Ωi−1,

χi(x) =











0 if χi−1(x) = 0 and ∇ui(x) ∈ R,

1 if χi−1(x) = 1 or ∇ui(x) 6∈ R,
(3.4)

2 ≤ i ≤ I, which is meaningful because the monotone character of the
sequence Ωi implies that if x ∈ Ωi−1, then x ∈ Ωi−2.

The globally dissipated energy Di from the start up time to the time
ti is given by

Di :=

∫

Ω
Kχi+1(x)dx.

The modeling of the fracturing process is conceptually similar to that
of the damage process. The crack free domain Ωi is the set complement in
Ωi−1 of the closure of the set on which the deformation solution field ui(x)
experiences jump discontinuities ( the “crack” at the time ti). Specifically,

ui ∈ SBV (Ωi−1; RN ), (3.5)

while
Ωi = Ωi−1\S(ui). (3.6)

Note that (3.6) does define a monotonically decreasing sequence of domains
Ω = Ω0 ⊃ Ω1 ⊃ · · · ⊃ ΩI , which is a natural way of imposing the irre-
versibility of the fracturing process.

Remark 3.2 In the light of (3.5), ∇ui(x) in (3.4) is density of the absolutely
continuous part of the weak derivative Dui(x).

The crack evolution is governed by the usual Griffith criterion (see e.g.
[Gdoutos 90], Ch. IV): for the crack to propagate the energy released
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through an infinitesimal virtual “extension” must exceed a critical threshold,
λ > 0, the critical energy release rate. Put otherwise a crack will not prop-
agate if, for any possible “extension” of that crack, the resulting decrease
(if any) in potential energy cannot offset the energy dissipated through that
“extension”. Define, for any v ∈ SBV (Ωi−1; RN ), the potential energy Pi(v)
to be

Pi(v) :=

∫

Ωi−1

Wi(x,∇v)dx−
∫

Ωi−1

fi · vdx.

Then the evolution law for the crack becomes

Pi(v) − Pi(ui) + λ[HN−1(S(v) ∩ Ωi−1) −HN−1(S(ui) ∩ Ωi−1)] ≥ 0 (3.7)

for any admissible v’s.

The evolution of damage and fracture as described above may be re-
formulated as a two field partial minimization problem. Specifically we set

Li(u, χ) :=

∫

Ωi−1

[(1 − χ(x))Wu(∇u(x)) + χ(x)Wd(∇u(x))]dx

+ K

∫

Ωi−1

χdx+ λHN−1(S(u) ∩ Ωi−1) −
∫

Ωi−1

fi · udx,(3.8)

where Ωi−1 is defined in (3.6).

In view of (3.4) we also define

Si := SBV (Ωi−1; RN ) (3.9)

Xi := {χ ∈ L∞(Ωi−1; {0, 1})|χ(x) ≥ χi−1(x) a.e. on Ωi−1}. (3.10)

Then χi, ui satisfy (3.4), (3.7) if and only if










Li(ui, χi) ≤ Li(u, χi), u ∈ S,

Li(ui, χi) ≤ Li(ui, χ), χ ∈ Xi.
(3.11)

In the setting of pure damage it was observed in [Francfort Marigo

91] that a principle of the kind (3.11) generates too many solutions and
that an additional selection criterion is desirable. A natural candidate is a
global stability principle, which forces (ui, χi) to be a global minimizer of
Li defined in (3.8) over all admissible pairs (u, χ) in S ×Xi. In other words
the (discretized) evolution of the interaction between damage and fracture
is described through the following
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Problem 3.3 For i ∈ {1, ..., I}, find (ui, χi) that minimizes Li over Si×Xi

with Ω−1 = Ω0 = Ω, χ0 = 0, u0 = id, and Ωi−1 = Ωi−2 \ S(ui−1), 1 ≤ i ≤
I + 1.

In a min–min problem the order in which the minimization is car-
ried out is unimportant. Minimizing in χ then in u, we define, for i ∈
{1, ..., I}, x ∈ Ωi−1 and ξ ∈ R

N2

,

ψi(x, ξ) :=











Wd(ξ) +K if χi−1(x) = 1,

min{Wu(ξ),Wd(ξ) +K} if χi−1(x) = 0,
(3.12)

and, for u in Si,

Φi(u) :=

∫

Ωi−1

ψi(x,∇u)dx

+λHN−1(S(u) ∩ Ωi−1) −
∫

Ωi−1

fi · udx. (3.13)

Then, Problem 3.3 is easily seen to be equivalent to the following single field
minimization problem:

Problem 3.4 For i ∈ {1, ..., I}, find ui that minimizes Φi over Si.

Remark 3.5 Although χi has seemingly disappeared from the formulation
of Problem 3.4, its presence is felt through the expression (3.12) for ψi.

Remark 3.6 The energy density ψi(x, ξ) is a Carathéodory function be-
cause Wu and Wd are continuous. In view of (3.1a), it satisfies

α|ξ|p ≤ ψi(x, ξ) ≤ β′(1 + |ξ|p). (3.14)

Furthermore

|ψi(x, ξ) − ψi(x, η)|

≤ max{|Wu(ξ) −Wu(η)|, |Wd(ξ) −Wd(η)|},

so that, by virtue of estimate (3.1c), we obtain

|ψi(x, ξ) − ψi(x, η)| ≤ β(1 + |ξ|p−1 + |η|p−1)|ξ − η|. (3.15)

Let us focus for the time being on the first time step t1.
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3.1 The first time step:

Since χ0 ≡ 0, the energy density ψ1 does not depend upon x, i.e. ψ1 =
min{Wu,Wd + K}. In view of (3.14) and (3.15), it satisfies hypotheses
(2.3a) and (2.3b) and we conclude that Theorem 2.1 applies. Denote by ψ∗

1

the W 1,p−quasiconvexification of ψ1, i.e.

ψ∗
1(ξ) := inf

Φ∈C∞

0
(Q;R

N
)

∫

Q
ψ1(ξ +DΦ(y))dy, (3.16)

where Q is a unit cube centered at 0, and set

Φ∗
1(u) :=

∫

Ω
ψ∗

1(∇u)dx+ λHN−1(S(u)) −
∫

Ω
f1 · udx. (3.17)

Then Theorem 2.1 implies that Φ∗
1 is the lower semi-continuous envelope of

Φ1 defined in (3.13) for the strong topology of L1(Ω; RN ).

The above result is not entirely satisfactory because it fails to guarantee
the existence of a minimizer for (3.17) over S1 = BV (Ω; RN ). Of course,
if such a minimizer exists, the resulting value of Φ∗

1 is the infimum of Φ1

over S1. The missing ingredient is the compactness in S1 of a minimizing
sequence for Problem 3.4. Indeed the functional Φ∗

1 (or Φ1) is not coercive
over BV (Ω; RN ). At the present time we do not know how to remove this
obstacle without additional assumptions on the admissible test fields . The
simplest such assumption is to impose on the fields to take their values in a
compact set M of R

N . Such a restriction is physically reasonable because
the model certainly implicitly precludes very large displacement other than
rigid body ones, since those would provoke the onset of e.g. plasticity which
is beyond the framework of this study; it is however an admittedly unusual
restriction in a problem of elasticity.

We thus assume that Si defined in (3.9) is replaced by

S∞
i := SBV (Ωi−1;M). (3.18)

Then Problem 3.4 at time t1 becomes

Problem 3.4∞ Find u1 that minimizes Φ1 over S∞
1 .

The first inequality in (3.14) together with the definition (3.18) of S∞
1 imply
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that a minimizing sequence un for Φ1 satisfies



































sup
n

‖un‖L∞(Ω) ≤ C < +∞,

sup
n
HN−1(S(un) ∩ Ω) ≤ C < +∞,

‖∇un‖Lp(Ω) ≤ C < +∞,

(3.19)

from which it is deduced that {un} is uniformly bounded in SBV (Ω; RN )
hence that, at the possible expense of extracting a subsequence still labelled
un,

un → u strongly in L1(Ω; RN ). (3.20)

By virtue of (3.18), (3.19) and because p > 1 a direct application of Theorem
2.1 in [Ambrosio 89a] implies that u ∈ SBV (Ω; RN ) while the previous
consideration permit to assert that u minimizes Φ∗

1 over S∞
1 .

We have thus proved the following

Proposition 3.7 The infimum of Φ1, defined in (3.13), over S∞
1 , defined

in (3.18), is the value of Φ∗
1, defined in (3.17), at any of its minimizers over

S∞
1 . Such minimizers exist.

The specific form of W1—see (3.2)—permits to be somewhat more pre-
cise in the description of ψ∗

1 . To this end we recall another expression for
ψ∗

1 which holds true because of (3.1a) (cf. [Ball Murat 84], Theorem 3.1,
Corollary 3.2 and Conjecture 3.7 (2); cf. also [Kohn 91], equation (2.12) and
Lemma 2.2 in the case of an energy that depends on the linearized strain).
Specifically we define, for any χ ∈ L∞(Q; {0, 1}) (Q a unit cube),

Wχ(x, ξ) := (1 − χ(x))Wu(ξ) + χ(x)Wd(ξ), ξ ∈ R
N2

, x ∈ Q,

W ∗
χ(ξ) := inf

ϕ

{
∫

Q
Wχ(x, ξ + ∇ϕ(x))dx|ϕ ∈W 1,p(Q; RN ),

ϕ is Q− periodic}, (3.21)

W ∗(θ, ξ) := inf
χ
{W ∗

χ(ξ)|χ ∈ L∞(Q; {0, 1}),

∫

Q
χdx = θ}. (3.22)

Then
ψ∗

1(ξ) = inf
0≤θ≤1

[W ∗(θ, ξ) +Kθ]. (3.23)
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Remark 3.8 If Wu and Wd are convex in ξ, then (3.21) may be identi-
fied with the energy density associated to the Γ−limit I0

χ of the following

functionals defined on W 1,p(Ω; RN ):

Iǫχ(u) :=

∫

Ω
Wχ(

x

ǫ
,∇u)dx,

where Wχ(·, ξ) has been Q−periodically extended to the whole of R
N (see

e.g. [Marcellini 78]) and an interpretation (and/or alternative derivation)
of the quasiconvexification of ψ1 may be proposed using homogenization
techniques (see [Francfort Marigo 93]).

When Wu or Wd are not convex the Γ− limit I0
χ of Iǫχ does not admit

W ∗
χ as energy density but W 0

χ defined as

W 0
χ(ξ) := inf

k∈Z
+

inf
ϕ

{

1

kN

∫

kQ
Wχ(x, ξ + ∇ϕ)dx|ϕ ∈W 1,p(kQ; RN ),

ϕ is kQ− periodic

}

, (3.24)

and W 0
χ can be shown not to necessarily coincide with W ∗

χ ([Müller 87]),
although certainly W 0

χ ≤W ∗
χ . It is however worth pointing out that, defining

W 0(θ, ξ) := inf
χ

{

W 0
χ(ξ)|χ ∈ L∞(Q; {0, 1}),

∫

Q
χ(x)dx = θ

}

, (3.25)

the following result holds true

W 0(θ, ξ) = W ∗(θ, ξ), (3.26)

as easily checked upon performing, for a fixed χ, k and ϕ, the change of
variables x = ky, setting

χk(y) := χ(ky), ϕk(y) :=
1

k
ϕ(ky)

and noting that, for any kQ− periodic ϕ,

1

kN

∫

kQ
Wχ(ξ + ∇ϕ(x))dx =

∫

Q
Wχk

(ξ + ∇ϕk(y))dy.

Note that the resulting ϕk is Q-periodic, while
∫

Q
χk(y)dy =

1

kN

∫

kQ
χ(x)dx =

∫

Q
χ(x)dx = θ.
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Thus, by (3.23), ψ∗
1 may reexpressed as

ψ∗
1(ξ) = inf

0≤θ≤1
[W 0(θ, ξ) +Kθ].

This remark, which seems to be new, states in essence that optimal energy
bounds on the periodic mixtures at fixed volume fraction of two arbitrary
energies can be obtained by consideration of a single period notwithstanding
convexity.

The following lemma whose proof follows that of a similar result for
the quadratic case ([Allaire Kohn 93], Proposition 8.1) holds true:

Lemma 3.9 W ∗ is locally Hölder continuous over [0, 1] × R
N2

. It further
satisfies, for any 0 ≤ θ ≤ 1,

α|ξ|p ≤W ∗(θ, ξ) ≤ β(1 + |ξ|p), ξ ∈ R
N2

, (3.27a)

|W ∗(θ, ξ) −W ∗(θ, η)| ≤ C(1 + |ξ|p−1 + |η|p−1)|ξ − η|, (3.27b)

with ξ, η ∈ R
N2

, 0 ≤ C ≤ +∞.

Proof of Lemma 3.9. By virtue of (3.1a) and of Jensen’s inequality applied
to |ξ|p, it is immediately seen that (3.27a) holds true.

The locally Lipschitz character of W ∗ in ξ is straightforward. For any
1 > ǫ > 0, there exists an admissible pair (χξ, ϕξ) of test functions such
that

∫

Q
[(1 − χξ)Wu(ξ + ∇ϕξ) + χξWd(ξ + ∇ϕξ)]dx ≤W ∗(θ, ξ) + ǫ. (3.28)

Because of (3.1a) inequality (3.28) implies in turn that

α‖ξ + ∇ϕξ‖
p
Lp(Q) ≤ β(1 + |ξ|p) + 1,

or still that
‖∇ϕξ‖Lp(Q) ≤ C(1 + |ξ|).

But, for any η in R
N2

, we obtain, by virtue of (3.1c),

W ∗(θ, η) ≤
∫

Q
[(1 − χξ)Wu(η + ∇ϕξ) + χξWd(η + ∇ϕξ)]dx

≤
∫

Q
[(1 − χξ)Wu(ξ + ∇ϕξ) + χξWd(ξ + ∇ϕξ)]dx

+C

∫

Q
(1 + |ξ|p−1 + |η|p−1 + |∇ϕξ|

p−1)|ξ − η|dx.
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Thus (3.28), together with the estimate on ‖∇ϕξ‖Lp(Q) yield

W ∗(θ, η) ≤W ∗(θ, ξ) + C(1 + |ξ|p−1 + |η|p−1)|ξ − η| + ǫ.

Letting ǫ tend to zero and exchanging the role of ξ and η permits to conclude
and to establish (3.27b).

The locally Hölder continuous character of W ∗ in θ is more involved
because it requires application of a Meyer’ type regularity result. Specif-
ically, for any ǫ > 0 choose χξ, an admissible test function in (3.22), such
that

W ∗
χξ

(ξ) ≤W ∗(θ, ξ) + ǫ.

At this point we use for the first time the hypothesis (3.1c) that Wu and
Wd are quasiconvex, hence that Wχξ

(x, ·) is too. Then, by virtue of (3.1a)

the infimum value W ∗
χξ

(ξ) is attained for a Q−periodic ϕξ in W 1,p(Q; RN )
in (3.21) (see e.g. [Acerbi Fusco 86], Theorem II.4 ). Thus

∫

Q
Wχξ

(x, ξ + ∇ϕξ(x))dx ≤W ∗(θ, ξ) + ǫ. (3.29)

Then according to Theorem 3.1 in Section V of [Giaquinta 83], ϕξ ∈

W 1,m
loc (Q; RN ) for some m > p and the following estimate holds true, for

Q′ ⊂⊂ Q,
‖∇ϕξ‖Lm(Q′) ≤ CQ′ , (3.30)

where CQ′ denotes throughout a constant that depends uponQ′, α, β, Ω and
ξ only. Note that (3.1a) and (3.27a) have been implicitly used in deriving
inequality (3.30). Choose χ′ ∈ L∞(Q; {0, 1}) with Q′ := supp(χ′−χξ) ⊂⊂ Q
and such that, setting

∫

Q
χ′dx = θ′,

then
∫

Q
|χ′ − χ|(x)dx = |θ′ − θ|.

We obtain

W ∗(θ′, ξ) ≤
∫

Q
Wχ′(ξ + ∇ϕξ)dx

=

∫

Q
Wχξ

(ξ + ∇ϕξ)dx
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+

∫

Q
(χ′ − χξ)(Wd −Wu)(ξ + ∇ϕξ)dx

≤
∫

Q
Wχξ

(ξ + ∇ϕξ)dx

+ C
∫

Q
ψ|χ′ − χξ|(1 + |ξ|p + |∇ϕξ|

p)dx,

where ψ ∈ C∞
0 (Q) with ψ ≡ 1 on Q′ and where we have used (3.1a). In-

equality (3.29) is recalled and Hölder’s inequality is applied to the last term
of the last inequality in the above string of inequalities. We obtain

W ∗(θ′, ξ) ≤ W ∗(θ, ξ) + ǫ

+C(

∫

Q
|χ′ − χξ|

m/(m−p))(m−p)/m(1 + |ξ|p + ‖∇ϕξ‖
p
Lm(suppψ))

or still, upon invoking (3.30),

W ∗(θ′, ξ) ≤W ∗(θ, ξ) + CQ′ |θ′ − θ|(m−p)/m + ǫ.

Letting ǫ tend to zero permits once again to conclude. Note that, provided
that θ′ is close enough to θ, there will always exist a χ′ with supp(χ′−χξ) ⊂⊂

Q′,

∫

Q
χ′dx = θ′ and

∫

Q
|χ′ − χ|(x)dx = |θ′ − θ|.

Remark 3.10 We denote by θ(ξ) the minimum of all minimizers of
{W ∗(θ, ξ) +Kθ, 0 ≤ θ ≤ 1}. By virtue of (3.23)

ψ∗
1(ξ) = W ∗(θ(ξ), ξ) +Kθ(ξ), ξ ∈ R

N2

.

If ξ(x), x ∈ Ω, is a simple function then θ(ξ(x)), x ∈ Ω, is also simple, hence
measurable.

Let u1 ∈ S∞ be a minimizer for Φ∗
1, the existence of which is guaranteed

by Proposition 3.7. Choose a sequence {ξn(x)} of simple functions that
converges pointwise to ∇u1(x) and set

θ1(x) := lim sup
n→+∞

θ(ξn(x)).

Then θ1 is a measurable function, and because W ∗(θ, ξ) is continuous over

[0, 1] × R
N2

we have for all θ ∈ [0, 1], a.e. x ∈ Ω and after extracting a
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suitable subsequence

W ∗(θ1(x),∇u1(x)) +Kθ1(x) = lim
n→+∞

W ∗(θ(ξn(x)), ξn(x)) +Kθ(ξn(x))

≤ lim
n→+∞

W ∗(θ, ξn(x)) +Kθ

= W ∗(θ,∇u1(x)) +Kθ

and so

W ∗(θ1(x),∇u1(x)) +Kθ1(x) = min{W ∗(θ,∇u1(x)) +Kθ, 0 ≤ θ ≤ 1}.
(3.31)

The function θ1(x) should be thought of as the local volume fraction of the
damaged material at the first time step. We have thus proved the following

Proposition 3.11 To each minimizer u1(x) of Φ∗
1 over S∞, there corre-

sponds a measurable volume fraction θ1(x) such that

inf
u∈S∞

Φ1(u) =

∫

Ω
W ∗(θ1(x),∇u1(x))dx+K

∫

Ω
θ1(x)dx

+λHN−1(S(u1)) −
∫

Ω
f1 · u1dx,

with W ∗ defined in (3.22).

Remark 3.12 Note that the pair (u1, θ1) ∈ S∞ ×X1 may not be unique.
The subsequent history of the evolution of the damage/fracture process will
depend upon the solution (u1, θ1) at time step t1. The reader may find it
convenient to think of the evolution as possibly exhibiting bifurcations at
each time step.

3.2 The subsequent time steps

We assume that (u1(x), θ1(x)) has been determined and recall Problem 3.3.
At the second time step t2, we must set, according to (3.6) and Problem 3.3,

Ω1 := Ω\S(u1),

which is the uncracked part of Ω after time t1. Thus the new domain is
unambiguously assigned once u1 is known. The irreversibility constraint,
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namely χ(x) ≥ χ1(x) a.e. in Ω, is not so easily handled because the re-
laxation at time t1 has merely produced a local volume fraction θ1(x) of
damaged material.

We define, for 1 ≤ i ≤ I and for a.e. x in Ωi−1,

ψ∗
i (x, ξ) := min

θi−1(x)≤θ≤1
[W ∗(θ, ξ) +Kθ], ξ ∈ R

N2

, (3.32)

where W ∗ has been defined in (3.22) and θ0(x) := 0.

In the spirit of the relaxation performed at the first time step in Subsec-
tion 3.1 we propose the following relaxed formulation for the subsequent
time steps:

Problem 3.13 For i ∈ {1, ..., I}, find (ui(x), θi(x)) such that ui minimizes

Φ∗
i (u) :=

∫

Ωi−1

ψ∗
i (x,∇u)dx + λHN−1(S(u) ∩ Ωi−1)

−
∫

Ωi−1

fi · udx (3.33)

over S∞
i , where ψ∗

i is defined in (3.31) and S∞
i in (3.18). The local volume

fraction θi(x) is such that, for a.e. x in Ωi−1,











ψ∗
i (x,∇ui(x)) = W ∗(θi(x),∇ui(x)) +Kθi(x),

θi(x) ≥ θi−1(x).
(3.34)

That Problem 3.13 admits a solution at time t1 has been established in
Proposition 3.7 and also because (3.34) follows from (3.31). At subsequent
time steps ti, Φ∗

i admits a minimizer if the density ψ∗
i (x, ξ) defined in (3.32)

is shown to be a quasiconvex Carathéodory function with p growth, i.e.,
such that, for some β′ < +∞, and for a.e. x in Ωi−1,

α|ξ|p ≤ ψ∗
i (x, ξ) ≤ β′(1 + |ξ|p), ξ ∈ R

N2

.

In such a case the energy density ψ∗
i (x, ξ) will meet all the requirements

that permit application of Theorem 4.3 in [Ambrosio 93a]. Since, as al-
ready seen in Section 2, HN−1(S(u)∩Ωi−1) is a jump integral, we conclude
that Φ∗

i (u) defined in (3.33) is strong-L1(Ωi−1; RN )-lower semicontinuous in
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SBV (Ωi−1; RN ). Furthermore, the minimizing sequences for Φ∗
i are bounded

in BV (Ωi−1; RN ) hence compact in L1(Ωi−1; RN ), which permits to conclude
to the existence of a minimizer ui for Φ∗

i in Problem 3.13. The following
lemma holds true:

Lemma 3.14 Assume that 2 ≤ i ≤ I. If there exists (ui−1(x), θi−1(x))
such that ui−1 minimizes Φ∗

i−1 over S∞
i , then the density ψ∗

i (x, ξ) defined in
(3.32) is a Carathéodory function satisfying, for some β′ < +∞, and a.e. x
in Ωi−1,

α|ξ|p ≤ ψ∗
i (x, ξ) ≤ β′(1 + |ξ|p), ξ ∈ R

N2

, (3.35a)

|ψ∗
i (x, ξ) − ψ∗

i (x, η)| ≤ β′(1 + |ξ|p−1 + |η|p−1)|ξ − η|, ξ, η ∈ R
N2

. (3.35b)

Furthermore, if ui is a minimizer for Φ∗
i over S∞

i , then there exists a local
volume function θi satisfying (3.34).

Proof of Lemma 3.14 It has been proved in Lemma 3.9 that W ∗ is in
particular continuous over [0, 1]×R

N2

. Thus assume that θi−1(x) exists and
is measurable. Then, Ψ∗ defined as

Ψ∗(θ̃, ξ̃) := min
θ̃≤θ≤1

[W ∗(θ, ξ̃) +Kθ], ξ̃ ∈ R
N2

, 0 ≤ θ̃ ≤ 1, (3.36)

is continuous on [0, 1] × R
N2

because W ∗ is continuous. We conclude that

ψ∗
i (x, ξ) = Ψ∗(θi−1(x), ξ),

is a Carathéodory function over Ωi−1 × R
N2

.

We now prove that, upon assuming the existence of a minimizer ui to
Φ∗
i defined in (3.33), a local volume fraction θi(x) satisfying (3.34) may be

defined. To this effect we denote by θ(θ̃, ξ̃) the minimum of all minimizers
in (3.36). If (θ̄(x), ξ̄(x)), x ∈ Ω, is a simple function then the associated
θ(θ̄(x), ξ̄(x)), x ∈ Ω, is also simple, hence measurable. If (θ̄(x), ξ̄(x)), x ∈ Ω
is a measurable pair, then we consider a sequence {(θ̄n(x), ξ̄n(x))} of simple
functions that converges pointwise to (θ̄(x), ξ̄(x)). We set, for a.e. x in Ωi−1,

Θ(θ̄, ξ̄)(x) := lim sup
n→∞

θ(θ̄n(x), ξ̄n(x)).

The function Θ(θ̄, ξ̄)(x) is measurable. Furthermore, for almost every x in
Ωi−1 and for every θ ≥ θ̄n(x),

W ∗(θ(θ̄n(x), ξ̄n(x))) +Kθ(θ̄n(x), ξ̄n(x)) ≤W ∗(θ, ξ̄n(x)) +Kθ,
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thus, by virtue of the continuous character of W ∗

W ∗(Θ(θ̄, ξ̄)(x), ξ̄(x)) +KΘ(θ̄, ξ̄)(x) ≤W ∗(θ, ξ̄(x)) +Kθ, (3.37)

for every θ > θ̄(x), and hence for every θ ≥ θ̄(x). But, for a.e. x in Ωi−1,

θ(θ̄n(x), ξ̄n(x)) ≥ θ̄n(x),

thus
Θ(θ̄, ξ̄)(x) ≥ θ̄(x).

We have thus exhibited a measurable function Θ(θ̄, ξ̄) such that, for
a.e. x in Ωi−1,

1 ≥ Θ(θ̄, ξ̄)(x) ≥ θ̄(x),

while by virtue of (3.37)

W ∗(Θ(θ̄, ξ̄)(x), ξ̄(x)) +KΘ(θ̄, ξ̄)(x) = min
θ≥θ̄(x)

[W ∗(θ, ξ̄)(x)) +Kθ]. (3.38)

It now suffices to set, for a.e. x in Ωi−1,

θi(x) := Θ(θi−1,∇ui)(x).

The proof of (3.35a) is immediate by virtue of (3.27a) in Lemma 3.9. That
(3.35b) is also satisfied follows from an argument identical to that led to
(3.27b). The proof of Lemma 3.14 is complete.

At this point the only missing ingredient is the quasiconvexity of ψ∗
i

from which the existence of a minimizer ui follows. In view of (3.1a), (3.1c),
(3.22), (3.26), (3.32), the question is immediately reduced to that of the

possible quasiconvex character of a functional defined on Ω × R
N2

by

ω(x, ξ) := inf
θ̄(x)≤θ≤1

[W 0(θ, ξ) + kθ], (3.39)

for a.e. x in Ω and every ξ in R
N2

, where θ̄ is some element of L∞(Ω; [0, 1]).
In (3.39) W 0 is the energy defined in (3.25) of Remark 3.8.

Appealing to e.g. Theorem II.2 in [Acerbi Fusco 84] the problem
of the quasiconvex character of ω defined in (3.39) may be rephrased in
terms of lower semicontinuity. Specifically, the density ω is shown to be
Carathéodory and to satisfy, for a.e. x in Ω and every ξ in R

N2

,

α|ξ|p ≤ ω(x, ξ) ≤ β′(1 + |ξ|p),
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through an argument which is identical to that used for the ψ∗
i ’s. Then

quasiconvexity will be established if the functional

v −→
∫

Ω
ω(x,∇v)dx

is proved to be sequentially weak-∗ lower semi-continuous on W 1,∞(Ω; RN ).

We thus consider a sequence {vn} in W 1,∞(Ω; RN ) such that

vn −⇀ v weak- ∗ in W 1,∞(Ω; RN ),

and an associated sequence {θn} such that, for a.e. x in Ω,











1 ≥ θn(x) ≥ θ̄(x),

ω(x,∇vn(x)) = W 0(θn(x),∇vn(x)) +Kθn(x).

Such a sequence exists by an argument identical to that used for the existence
of θi(x) satisfying (3.34) in Lemma 3.14; furthermore, at the possible expense
of extracting a subsequence still labelled θn, we may assume that, as n tends
to ∞,

θn −⇀ θ weak- ∗ in L∞(Ω; [0, 1]),

with θ(x) ≥ θ̄(x), a.e. in Ω.

We now assume that the following result holds true:

Conjecture 3.15 Let Wu and Wd be defined as in (3.1) and W 0
χ as in

(3.24). For any sequence {χq} in L∞(Ω; {0, 1}), define

Iχq(v) :=

∫

Ω
[(1 − χq(x))Wu(∇v(x)) + χq(x)Wd(∇v(x))]dx. (3.40)

(C1) Assume that











χq −⇀ θ weak - ∗ in L∞(Ω; [0, 1]),

Iχq

Γ
−⇀ I0

{χq}
in W 1,p(Ω; RN )

(3.41)

(which is always possible after extraction of a suitable subsequence). Denote
by W 0

{χq}
(x, ξ) the energy density associated to I0

{χq}
(such a density exists
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according to [Buttazzo Dal Maso 85]. Then, for a.e. x in Ω, there exists
a sequence χr(x; ·) ∈ L∞(Q; {0, 1}) such that



















θ(x) =

∫

Q
χr(x; y)dy,

W 0
{χq}

(x, ξ) = lim
r→+∞

W 0
χr(x;·)(ξ), ξ ∈ R

N2

,

where W 0
χ (χ ∈ L∞(Q; {0, 1}) has been defined in (3.24).

(C2) Conversely, if W (x, ξ) is a Carathéodory function such that, for a.e.
x in Ω, there exists a sequence χr(x; ·) satisfying



















θ(x) =

∫

Q
χr(x; y)dy,

W (x, ξ) = lim
r→+∞

W 0
χr(x;·)(ξ), ξ ∈ R

N2

,

then there exists a sequence χq ∈ L∞(Ω; {0, 1}) such that















χq −⇀ θ weak - ∗ in L∞(Ω; [0, 1]),

Iχq

Γ
−⇀

∫

Ω
W (x,∇·)dx in W 1,p(Ω; RN ).

Remark 3.16 Conjecture 3.15 says in essence that the energy density as-
sociated to the Γ−limit of any functional of the form (3.40) ”coincides”
pointwise with that of the Γ− limit of a functional of the form (3.40) spe-
cialized to sequence {χq} of the form

χq(x) = χ(qx)

where χ is a characteristic function defined on Q and extended by periodicity
to the whole of R

N . For such sequences the Γ−limit is known to admit W 0
χ

as energy density (see Remark 3.8). In other words it asserts the canonical
character of periodic homogenization as far as effective energy densities are
concerned. That conjecture is true in the quadratic case ([Dal Maso Kohn

94] ) and it may be shown to be true in the case where Wu and Wd are
convex and satisfy (3.1a) ([Francfort Murat 94]). Whether it is true in
the general case where Wu and Wd are arbitrary, or even quasiconvex, is an
open question.
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We thus assume that Conjecture 3.15 holds true. Then, upon setting
v∞ ≡ v, θ∞ ≡ θ,
∫

Ω
W 0(θn(x),∇vn(x))dx = inf

{
∫

Ω
W 0

{χq}
(x,∇vn(x))dx|χq ∈ L∞(Ω; [0, 1])

with Iχq

Γ
−⇀ I0

{χq}
and

χq −⇀ θn weak- ∗ in L∞(Ω; [0, 1])

}

, (3.42)

for n = 1, 2, . . . ,∞. Indeed, if χq −⇀ θn weak-∗ in L∞(Ω; [0, 1]) and Iχq

Γ
−⇀

I0
{χq}

, then by (C1) there exists a sequence χr(x, ·) ∈ L∞(Q; {0, 1}) such that

W 0
{χq}

(x, ξ) = lim
r→+∞

W 0
χr(x,·)(ξ)

with
∫

Q
χr(x, y)dy = θn(x),

for a.e. x in Ω and every ξ in R
N2

; thus
∫

Ω
W 0

{χq}
(x,∇vn(x))dx =

∫

Ω
lim

r→+∞
W 0
χr(x,·)(∇vn(x))dx

≥
∫

Ω
W 0(θn(x),∇vn(x))dx. (3.43)

The last inequality in (3.43) above holds true by virtue of (3.25). On the
other hand the continuous character of W ∗ – see Lemma 3.9 – together with
(3.26) permit to find a sequence {vns(x)}, x ∈ Ω, of simple functions on Ω
such that

W 0(θn(x), vns(x))
s→∞
−→ W 0(θn(x),∇vn(x)), a.e. x in Ω.

On a measurable subset Ωj of Ω (1 ≤ j ≤ j(n, s)) where vns is constant there
exists a sequence of functions {χnsjr (x, ·)} ∈ L∞(Q; {0, 1}) such that



















∫

Q
χnsjr (x, y)dy = θn(x),

W 0(θn(x), vns(x)) = lim
r→+∞

W 0
χnsj

r (x,·)
(vns(x)),

for a.e. x in Ωj . Through a diagonalization process we conclude to the
existence of a sequence {χnr (x, ·)} ∈ L∞(Q; {0, 1}) such that

∫

Q
χnr (x, y)dy = θn(x).
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W 0(θn(x),∇vn(x)) = lim
r→∞

W 0
χn

r (x,·)(∇vn(x)). (3.44)

Note that the continuous character of W 0
χ in ξ and the compactness of

{∇vn(x)|x ∈ Ω} in R
N has been implicitly used in deriving (3.44). Define,

for a.e. x in Ω and every ξ in R
N2

,

W 0
n(x, ξ) := lim

r→∞
W 0
χn

r (x,·)(ξ). (3.45)

Then W 0
n is easily checked to be Carathéodory. Thus, by (C2), there exists

a sequence χnq ∈ L∞(Ω; {0, 1}) with

χnq −⇀ θn weak- ∗ in L∞(Ω; [0, 1]),

and

Iχn
q

Γ
−⇀

∫

Ω
W̄ 0
n(x,∇·)dx.

Hence
W 0

{χn
q }

= W 0
n .

But, by virtue of (3.44) and (3.45)

W 0
n(x,∇vn(x)) = W 0(θn(x),∇vn(x)), for a.e. x in Ω.

Thus
∫

Ω
W 0

{χn
q }

(x,∇vn(x))dx =

∫

Ω
W 0(θn(x),∇vn(x))dx,

which, together with (3.43), proves (3.42).

In view of (3.42) the very definition of Γ convergence implies the existence
of a sequence {χnq} in L∞(Ω; [0, 1]) of a sequence {vnq} in W 1,p(Ω; RN ) and
of an integer q(n), with q(n) depending on n such that







































χnq
q→+∞
−⇀ θn weak- ∗ in L∞(Ω; [0, 1]),

vnq
q→+∞
−⇀ vn weakly in W 1,p(Ω; RN ),

1

n
+

∫

Ω
W 0(θn(x),∇vn(x))dx ≥ Iχnq(vnq), q ≥ q(n).

(3.46)
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A diagonalization argument permits to conclude to the existence of sequence
χ̃n = χnq′(n), ṽn = vnq′(n) such that



































χ̃n −⇀ θ weak- ∗ in L∞(Ω; [0, 1]),

ṽn ⇀ v weakly in W 1,p(Ω; RN ),

lim inf
n→∞

Iχ̃n(ṽn) ≤ lim inf
n→∞

∫

Ω
W 0(θn(x),∇vn(x))dx.

(3.47)

The third inequality of (3.46) and the fact that (a subsequence of) χ̃n sat-
isfies (cf. (3.41))

Iχ̃n

Γ
−⇀ I0

{χ̃n}
,

imply that

lim inf
n→∞

∫

Ω
W 0(θn(x),∇vn(x))dx ≥ I0

{χ̃n}
(v)

=

∫

Ω
W 0

{χ̃n}
(x,∇v(x))dx

≥ inf

{
∫

Ω
W 0

{χq}
(x,∇v(x))dx|χq ⇀ θ

weak- ∗ in L∞(Ω; [0, 1])

}

=

∫

Ω
W 0(θ(x),∇v(x))dx.

Note that (3.42) applied with n = ∞ has been used in deriving the last
equality. Thus, recalling (3.39) and the inequality θ(x) ≥ θ̄(x), a.e. in Ω,
we obtain

lim inf
n→∞

∫

Ω
ω(x,∇vn(x))dx ≥

∫

Ω
[W 0(θ(x),∇v(x)) +Kθ(x)]dx

≥
∫

Ω
ω(x,∇v(x))dx,

which was the result sought.

We conclude that

Proposition 3.17 If Wu and Wd defined in (3.1) are such that Conjecture
3.15 holds true (such is the case if Wu and Wd are e.g. convex) then Problem
3.13 admits a solution.
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Remark 3.18 The reader should refrain from drawing the conclusion that
Problem 3.13 is a “relaxation” of Problem 3.3 (or 3.4). Indeed although Sub-
section 3.1 established that Φ∗

1 is a bona fide relaxation of Φ1, the argument
breaks down at subsequent time steps because the irreversibility constraint
χ(x) ≥ χi−1(x) a.e. in Ωi−1 for admissible χ’s in Xi (see (3.10)) has been
relaxed to θ(x) ≥ θi−1(x) in the definition of ψ∗

i .

This pathology which has already been encountered in [Francfort

Marigo 93] has not as of yet been circumvented. The complete discretized
time/space relaxation, which may be different from that hinted at in this
subsection, is beyond reach because it would require a better understanding
of the minimizing sequences χin(x) for a given θi(x) in expressions like (3.22).
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