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Small strain elastoplasticity



Small strain elasto-plasticity — the rheology

e A model with brake and spring:
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2 with K closed convex
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o=Ae divo =0 inQ (f conv., f(0) <0, f N o0)

A - Hooke's law set of admissible stresses
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Small strain elasto-plasticity — the formulation = =p

MXN . — {7 symmetric : tr 7 = 0}

dev
tr 7.
T = Wl + 7p
o Eu — DU+DUt:e+p ceK:={r:f(rp)<0}
with K closed convex
p € MIXN || o0
o=Ae divo =0 inQ (f conv.,, f(0) <0, f 7 o0)
A - Hooke's law set of admissible stresses
e Flow rule:
p(t) € Ao =

{Te MXN:IN > 05t 7= )\Z:(a(t)) and Mf(o(t)) = o}
T

p(t) € Nk(o(t)), the normal cone to K at o(t) € 0K(t)
eb.c : u(x,t) =w(x,t) € AC([0, T]; H2(04; R3))

0480 Dirichlet bdary: open / 9;Q := 9Q \ 942 : open, no forces
e Existence of an evolution known under C?-smoothness for 9Q+

C2-smoothness of Jpq[04Q]: — by viscoplastic approx. (Suquet 1978)
— through var. evolutions (Dal Maso-

De Simone-Mora2004)



Small strain elasto-plasticity — the formulation = =p

MXN . — {7 symmetric : tr 7 = 0}

dev
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o Eu — Du + Du —e+p O'IEKZ:{TZf(TD)SO}
2 with K closed convex

p € MIXN || o0
o=Ae divo =0 inQ (f conv.,, f(0) <0, f 7 o0)

A - Hooke's law set of admissible stresses
e Flow rule:

p(t) € Ao =
{Te MXN:IN > 05t 7= )\Z:(U(t)) and Mf(o(t)) = o}
T

p(t) € Nk(o(t)), the normal cone to K at o(t) € 0K(t)
eb.c : u(x,t) =w(x,t) € AC([0, T]; H2(04; R3))
0480 Dirichlet bdary: open / 9;Q := 9Q \ 942 : open, no forces
ue AC(0, T; BD(Q2))
E(u) = e+p kin. compatibility { e € AC(0, T; L?(; RN))
p € AC(0, T; Mp(Q U 9g; M)



Small strain elasto-plasticity — the formulation = =p

MNXN = {7 symmetric : tr 7 = 0}
tr 7, o
T=—
NP
t
o Eu — Du + Du —e+p O'IEKZ:{TZf(TD)SO}
2 with K closed convex

p € MIXN || o0
o=Ae divo =0 inQ (f conv., f(0) <0, f N o0)

A - Hooke's law set of admissible stresses
e Flow rule:

p(t) € Ao =
{Te MXN:IN > 05t 7= )\Z:(a(t)) and Mf(o(t)) = o}
T

p(t) € Nk(o(t)), the normal cone to K at o(t) € 0K(t)
eb.c : u(x,t) =w(x,t) € AC([0, T]; H2(04; R3))
0480 Dirichlet bdary: open / 9;Q := 9Q \ 942 : open, no forces

b.c. on 049 has been relaxed: p=[w —u]Ov, w—u L v
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e Fromdive =0 + o € 2(Q;MYVXN N K), we get:

sym
(o0pv)-(the tangential part of ov) € (Kv),

_1
71 a priori well defined as an element of H002 (85/9; RN)

I
e Since p = [w(t) — u(t)] © v on 949, with [w(t) — i(t)] L v, we
expect a boundary flow rule:
[W(t) — [l(t)] S N(KV)T((UDV)T) on 9412

in fact well defined as an element of Loo(adQ, RN) T maybe not unique
. 2
unless bdary is C

bulk flow rule



The variational approach

to elastoplasticity



Variational evolution in a nutshell

e Define:

— diss. pot. : (p =sup{op-p:o € K}

)
— dissipation: 9 X
— total diss.: D(0, t; p) := = SUPpart. of [0,t] Zi H(p(ti+1) — p(ti))
— total energy:  E(t) :=1/2 [, Ae(t) - e(t)dx + D(0, t; p)
At each time t, (u(t), e(t),o(t) := Ae(t), p(t)) satisfies
o Global min.: 1/2 [, Ae(t)-e(t)dx < 1/2 [ An-ndx +H(q — p(t))

(ve)
e Energy cons.: %(t) = /Qa(t) - Ew(t)dx



Variational evolution in a nutshell
e Define:

—diss. pot. :  H(p):=sup{op-p:0€ K}

)
L q
— dissipation:  H(q) := /Quadﬂ H <|q|(x)> d|q|
— total diss.: D(0, t; p) := SUPpart. of [0,t] Zi H(p(ti+1) — p(ti))
— total energy:  E(t) :=1/2 [, Ae(t) - e(t)dx + D(0, t; p)
At each time t, (u(t), e(t),o(t) := Ae(t), p(t)) satisfies
o Global min.: 1/2 [, Ae(t)-e(t)dx < 1/2 [ An-ndx +H(q — p(t))
(ve)
e Energy cons.: %(t) = /Qa(t) - Ew(t)dx

e Proof through time discretisation: Find (uj, €;, p;) kin.
compatible solving

min {1/2/9Ae~edx+’H(p - p;_1)}



Variational evolution in a nutshell
e Define:

—diss. pot. :  H(p):=sup{op-p:0€ K}

)
L q
— dissipation:  H(q) := /Quadﬂ H <|q|(x)> d|q|
— total diss.: D(0, t; p) := SUPpart. of [0,t] Zi H(p(ti+1) — p(ti))
— total energy:  E(t) :=1/2 [, Ae(t) - e(t)dx + D(0, t; p)
At each time t, (u(t), e(t),o(t) := Ae(t), p(t)) satisfies
o Global min.: 1/2 [, Ae(t)-e(t)dx < 1/2 [ An-ndx +H(q — p(t))
(ve)
e Energy cons.: %(t) = /Qa(t) - Ew(t)dx

e Proof through time discretisation: Find (uj, €;, p;) kin.
compatible solving

min {1/2/9Ae~edx+’H(p - p;_1)}

- Note that, if (u, e, p) (resp. (v, €’,p')) min. 1/2 [ An-ndx + H(q — p)
(resp p'), then

e —elliz < € {I1EW — Ewlliz + 1’ — plao,a)



Variational evolution in a nutshell
e Define:

—diss. pot. :  H(p):=sup{op-p:0€ K}

)
L q
— dissipation:  H(q) := /Quadﬂ H <|q|(x)> d|q|
— total diss.: D(0, t; p) := SUPpart. of [0,t] Zi H(p(ti+1) — p(ti))
— total energy:  E(t) :=1/2 [, Ae(t) - e(t)dx + D(0, t; p)
At each time t, (u(t), e(t),o(t) := Ae(t), p(t)) satisfies
o Global min.: 1/2 [, Ae(t)-e(t)dx < 1/2 [ An-ndx +H(q — p(t))
(ve)
e Energy cons.: %(t) = /Qa(t) - Ew(t)dx

e Proof through time discretisation: Find (uj, €;, p;) kin.
compatible solving

min {1/2/QAe~edx+’H(p - p;_1)}

- The lower semi-continuity of H is ensured by Reshetnyak’s lower
semi-continuity theorem
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Variational evolution & classical formulation — 1

e Global minimality & —H(q) < [, Ae-n dx < H(—q)
V(v,n, q) kin. compat. with b.c. w =0
!

equilibrium 4+ Neumann b.c.4+ 0 € K

e To go further, need to define the duality (op, p).
Not so clear because op not continuous!



Isues of duality

Here o and p are arbitrary provided that o satisfies eqm. + Neumann b.c.+stress
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Isues of duality

Here o and p are arbitrary provided that o satisfies eqm. + Neumann b.c.+stress

adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

e First define (op, p) as a distribution:

(00p)(¢) = [ po-(e~ Ew)dx— [ o-[(u=w)® Vel dx
@ @ + OK since o € LV
e Known result: If 9Q is C? and 9yq[049] is a C?
(N — 2)-hypersurface, then (op, p) is a finite Radon meas. on RV
(Kohn-Temam 1983)
e Thm: Q Lipschitz. Then (op, p) is a finite Radon meas. on
RN\ 99010492 and (o0, )| < lloplle=Ipl, (00, P)a = 00 - Pa
e Technical point: What do we need for (op, p) to be a finite
Radon meas. on all of RN?
e Open pb.: Can we prove this under the only assumption that e.g.

HN_2(33Q [049]) < 007
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e Just using the definition of the duality:
(00.p) 10,0 = (00¥)- (W — )H[ 5
U
(Ineq) <| |> |p| > (op, p) as measures

Here again o and p are arbitrary provided that o satisfies eqm. + Neumann b.c. +

stress adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

e From energy equality + Reshetnyak's lower semi-continuity thm.:
H(p )<D0tp ——fQ -(é— Ew)(t) dx = (op, p)(2U 949)
T ls.c. Ten. eq. 1 duality
\

Hill's maximal plastic work principle
<JD’ >(Q U adQ) = SUP7; adm. <TD7 >(Q U adQ)

e From H <‘ ‘> |p| = (oD, p), we recover the flow rule, BOTH in

Q and on 04%2:
pa € NK(O'D) in Q; |W — L'I‘ S N(KV)T((UDV)T) on 0482
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A multiphase domain
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No ordering property of the Kj;'s
We will need C! interfaces

e Define the dissipation :
H(x, p) := Hi(p) = sup{op - p: op € K;} in each phase i. Since
we expect p to be a measure, how do we define H on £2; N €2;?



A multiphase domain

ﬂ an
]
o

No ordering property of the Kj;'s
We will need C! interfaces

o I HI/HI/} because destroys convexity = Inf-convolution:
H(x, ) =
inff{H(a® v(x))+ H(-b o v(x));a—b=c}, ifé=coOv(x)
{ oo, else o}
destroys l.s.c./ Need to re-establish |.s.c. of H:
Thm: If (up, en, pn) kin. compatible and the natural weak conv.
hold (BD x L? x My) then H(p) < liminf, H(p,)

—why Cl-interfaces are necessary—
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e We recover all results of homogeneous case = interfacial
conditions:
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Heterogeneous evolution

e Existence of a variational evolution

e We recover all results of homogeneous case = interfacial
conditions:

e Stress adm.: (opv), € (Kiv). N (Kjv),
e Flow rule: i — i; € N(K,-y)m(;gu)f((UDV)‘r)

e Exact expression of H on interfaces is used in deriving

For now unable to find concrete example where the interfacial flow
rule makes a difference!

e Choice of dissipation is the right one for passing to the zero
hardening limit in a model with isotropic linear hardening.



Homogenization
e Rescaled heterogeneous variational evolution: x replaced by x/e
for multiphase torus ) with C1 interfaces.
e Homogenization: with approp. i.c.’s, 3¢, s.t., for all t € [0, T],

un(t)2u(t) weakly* in BD(Q)
en(t) 2 E(t) two-scale weakly in L2(Q' x Y; MN<N)
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Here, E(x,y) LY @ L) + P — Eu® L) = Eypuin Q' x Y with
pe Mp(Q x ViRV)), By e Mp(Q x Vi MEXN), u(F x V) =
0, VF Borel C Q.
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Homogenization
e Rescaled heterogeneous variational evolution: x replaced by x/e
for multiphase torus ) with C1 interfaces.
e Homogenization: with approp. i.c.’s, 3¢, s.t., for all t € [0, T],

un(t)2u(t) weakly* in BD(Q)
en(t) 2 E(t) two-scale weakly in L2(Q' x Y; MN<N)
pn(t) g P(t) two-scale weakly* in M(Q' x Y; MN).

Here, E(x,y) LY @ L) + P — Eu® L) = Eypuin Q' x Y with
pe Mp(Q x ViRV)), By e Mp(Q x Vi MEXN), u(F x V) =
0, VF Borel C Q.

e Further (u(t), E(t), P(t)) is a two-scale quasistatic evolution:
defined as before with explicit y-dependence; for example:

dissipation H"°™(Q) := H (y, Q(va)> d|Q|
YxQUO4Q |Q‘

e Not possible to eliminate y-dependence
e In essence, P(-,-,y) is, for each y € Y, an internal var. = 3 flow
rule in y that expresses normality at the micro level.......
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Arguing our choice of dissipation — isotropic linear hardening

e Additional variable: ((t, x) measures change of convex of
plasticity K(t,x) := (1 —((t,x))K(x), z dual variable to ¢

z, H(x,p)<z

oo, else

e Vanishingly small hardening ((t) := —h?z(t) with “flow rule”:
linear increase of plast. convex as a fct. of the plastic work
accumulated

e Assd. dissipation: :‘:I(x7 p,z) =

z(t,x) = /Ot H(x, p(r,x)) dr



Arguing our choice of dissipation — isotropic linear hardening

e Additional variable: ((t, x) measures change of convex of
plasticity K(t,x) := (1 —((t,x))K(x), z dual variable to ¢

~ <
e Assd. dissipation: H(x,p,z) = z, Hlop) <z

oo, else
e Vanishingly small hardening ((t) := —h?z(t) with “flow rule”:
linear increase of plast. convex as a fct. of the plastic work

accumulated ‘
z(t,x) :/ H(x, p(r,x)) dr

(3 Rlot so hard to see
Variational evolution for

(Un, €n, Phy 2h) €
HY(Q; RN) x L2(Q; MNXN) x 12(9; MIDNY x L2(Q):

with i.c. =0
e Global min.: 1/2 [ An-ndx + h?/2 [o y?dx + ||y — z||;1 among
all (v,n,q,y) with Ev=n+gq, H(x,q) <z
e Energy cons. : same as before with

En(t) :=1/2 [, Aen(t) - en(t)dx + h?/2 [ z2 (t)dx + [ zn(t)dx



Heterogeneous plasticity as limit of model with isotropic hardening

h\, 0

. M SBYV, 12 .
e Usual estimates: p, — p; up, — u; e, — e with (u, e, p)

kim. compatible.

e Pass to the limit in EL egs.: L
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Heterogeneous plasticity as limit of model with isotropic hardening

h\, 0

. M SBYV, 12 .
e Usual estimates: p, — p; up, — u; e, — e with (u, e, p)

kim. compatible.

e Pass to the limit in EL egs.: L
div op = 0; opr =0 on 9N \ 042 (on)p € (1 —(n)K

e Apply = —H(q) < [qo(t)-ndx < H(—q), V(v,n,q) kin.
comp = Global min.
Requires the correct dissipation functional

e Energy conservation in the limit easy consequence of |.s.c. dissn.
+ D(0,t;p) <D(0, t; p)



