Heterogeneous Elasto-plasticity

 $\pi\lambda\dot{\alpha}\sigma\sigma\varepsilon\iota\nu$

G. F. & Alessandro Giacomini

Small strain elastoplasticity

Small strain elasto-plasticity - the rheology

• A model with brake and spring:

$$\begin{aligned} &|\sigma| \leq \sigma_c \\ & \text{with} \; \left\{ \begin{array}{ll} \dot{\varepsilon}^p \geq 0 & \sigma = \sigma_c \\ \dot{\varepsilon}^p = 0 & |\sigma| < \sigma_c \\ \dot{\varepsilon}^p \leq 0 & \sigma = -\sigma_c \end{array} \right. \end{aligned}$$

• Response:

$$\mathbb{M}_{dev}^{N\times N} := \{\tau \text{ symmetric}: \text{ tr } \tau = 0\}$$

$$\tau = \frac{\operatorname{tr} \tau}{N} \mathfrak{i} + \tau_D$$

$$\bullet Eu := \frac{Du + Du^t}{2} = e + p \qquad \sigma \in K := \{\tau : f(\tau_D) \leq 0\}$$

$$\psi \in \mathbb{M}_{dev}^{N\times N} = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$A : \text{ Hooke's law} \qquad (f \text{ conv., } f(0) < 0, f \nearrow \infty)$$

$$\text{ set of admissible stresses}$$

$$\mathbb{M}_{dev}^{N\times N} := \{\tau \text{ symmetric}: \text{ tr } \tau = 0\}$$

$$\tau = \frac{\text{tr } \tau}{N} \mathfrak{i} + \tau_D$$

$$\bullet \ Eu := \frac{Du + Du^t}{2} = e + p \qquad \sigma \in K := \{\tau : f(\tau_D) \leq 0\}$$

$$\psi \in \mathbb{M}_{dev}^{N\times N} = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

Flow rule:

$$\begin{split} \dot{p}(t) \in & \mathcal{A}\sigma \!:= \\ \left\{ \tau \!\in \mathbb{M}_{dev}^{N \times N} \!:\! \exists \lambda \geq 0 \text{ s.t. } \tau = \lambda \frac{\partial f}{\partial \tau}(\sigma(t)) \text{ and } \lambda f(\sigma(t)) = 0 \right\} \end{split}$$

 $\dot{p}(t) \in N_K(\sigma(t))$, the normal cone to K at $\sigma(t) \in \partial K(t)$

$$\mathbb{M}_{dev}^{N\times N} := \{\tau \text{ symmetric}: \text{ tr } \tau = 0\}$$

$$\tau = \frac{\text{tr } \tau}{N} \mathbf{i} + \tau_{D}$$

$$\bullet Eu := \frac{Du + Du^{t}}{2} = e + p \qquad \sigma \in K := \{\tau : f(\tau_{D}) \leq 0\}$$

$$\psi \in \mathbb{M}_{dev}^{N\times N} = 0 \quad \text{in } \Omega$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega$$

$$A : \text{ Hooke's law} \qquad \text{set of admissible stresses}$$

• Flow rule:

$$\begin{split} \dot{p}(t) \in & \mathcal{A}\sigma := \\ \left\{ \tau \in \mathbb{M}_{dev}^{N \times N} : \exists \lambda \geq 0 \text{ s.t. } \tau = \lambda \frac{\partial f}{\partial \tau}(\sigma(t)) \text{ and } \lambda f(\sigma(t)) = 0 \right\} \end{split}$$

 $\dot{p}(t) \in N_K(\sigma(t))$, the normal cone to K at $\sigma(t) \in \partial K(t)$

• b.c. : $u(x,t) = w(x,t) \in AC([0,T]; H^{\frac{1}{2}}(\partial_d\Omega; \mathbb{R}^3))$ $\partial_d\Omega$ Dirichlet bdary: open $/\partial_t\Omega := \partial\Omega \setminus \overline{\partial_d\Omega}$: open, no forces

$$\mathbb{M}_{dev}^{N\times N} := \{ \tau \text{ symmetric} : \text{ tr } \tau = 0 \}$$

$$\tau = \frac{\text{tr } \tau}{N} \mathfrak{i} + \tau_{D}$$

•
$$Eu := \frac{Du + Du^t}{2} = e + p$$
 $\sigma \in K := \{\tau : f(\tau_D) \le 0\}$ with K closed convex

$$\sigma = Ae$$
; div $\sigma = 0$ in Ω

A: Hooke's law

• Flow rule:
$$\dot{p}(t) \in \mathcal{A}\sigma :=$$

$$\left\{ \tau \in \mathbb{M}_{dev}^{N \times N} : \exists \lambda \geq 0 \text{ s.t. } \tau = \lambda \frac{\partial f}{\partial \tau}(\sigma(t)) \text{ and } \lambda f(\sigma(t)) = 0 \right\}$$

$$\dot{p}(t) \in N_K(\sigma(t))$$
, the normal cone to K at $\sigma(t) \in \partial K(t)$

- b.c. : $u(x, t) = w(x, t) \in AC([0, T]; H^{\frac{1}{2}}(\partial_d \Omega; \mathbb{R}^3))$ $\partial_d \Omega$ Dirichlet bdary: open $/\partial_t \Omega := \partial \Omega \setminus \overline{\partial_d \Omega}$: open, no forces
- Existence of an evolution known under C^2 -smoothness for $\partial \Omega$ + C^2 -smoothness of $\partial_{\partial\Omega}[\partial_d\Omega]$: – by viscoplastic approx. (Suquet 1978)

De Simone-Mora 2004

 $(f \text{ conv., } f(0) < 0, f \overset{|\tau| \nearrow \infty}{\nearrow} \infty)$

set of admissible stresses

Small strain elasto-plasticity – the formulation $\varepsilon^p \equiv p$ $\mathbb{M}_{dev}^{N \times N} := \{ \tau \text{ symmetric} : \text{ tr } \tau = 0 \}$

$$\tau = \frac{\operatorname{tr} \, \tau}{N} \mathfrak{i} + \tau_D$$

•
$$Eu := \frac{Du + Du^t}{2} = e + p$$
 $\sigma \in K := \{\tau : f(\tau_D) \le 0\}$ with K closed convex $\sigma = Ae$: div $\sigma = 0$ in Ω $(f \text{ conv.}, f(0) < 0, f \nearrow \infty)$

set of admissible stresses

- $p \in \mathbb{M}_{dov}^{N \times N}$ $\sigma = Ae$: div $\sigma = 0$ in Ω
- A: Hooke's law Flow rule:

• Flow rule:
$$\dot{p}(t) \in \mathcal{A}\sigma :=$$

$$\left\{\tau\!\in\!\mathbb{M}_{dev}^{\textit{N}\times\textit{N}}\!:\!\exists\lambda\geq0\;\text{s.t.}\;\tau=\lambda\frac{\partial f}{\partial\tau}(\sigma(t))\;\text{and}\;\lambda f(\sigma(t))=0\right\}$$

$$au_{ev}$$
 . $\exists \lambda \geq 0$ s.t. $T = \lambda \frac{\partial}{\partial au}(O(t))$ and $\lambda T(O(t)) = 0$

$$\dot{p}(t) \in N_K(\sigma(t))$$
, the normal cone to K at $\sigma(t) \in \partial K(t)$

$$(\sigma(t))$$
, the normal cone to K at $\sigma(t) \in \partial K(t)$
 $(x,t) = w(x,t) \in AC([0,T]; H^{\frac{1}{2}}(\partial_d \Omega; \mathbb{R}^3))$
ichlet bdary: open $/\partial_t \Omega := \partial \Omega \setminus \overline{\partial_d \Omega}$: open, no for

$$(x,t) = w(x,t) \in AC([0,T]; H^{\frac{1}{2}}(\partial_d \Omega; \mathbb{R}^3))$$
 chlet bdary: open $/ \partial_t \Omega := \partial \Omega \setminus \overline{\partial_d \Omega}$: open, no

• b.c. :
$$u(x,t) = w(x,t) \in AC([0,T]; H^{\frac{1}{2}}(\partial_d \Omega; \mathbb{R}^3))$$

• $\partial_d \Omega$ Dirichlet bdary: open $/ \partial_t \Omega := \partial \Omega \setminus \overline{\partial_d \Omega}$: open, no forces
$$E(u) = e + p \text{ kin. compatibility } \begin{cases} u \in AC(0,T;BD(\Omega)) \\ e \in AC(0,T;L^2(\Omega;\mathbb{R}^N)) \\ p \in AC(0,T;M_b(\Omega \cup \partial_d \Omega;\mathbb{M}_{dev}^{N \times N})) \end{cases}$$

$$\mathbb{M}_{dev}^{N\times N} := \{\tau \text{ symmetric}: \text{ tr } \tau = 0\}$$

$$\tau = \frac{\text{tr } \tau}{N} \mathbf{i} + \tau_{D}$$

$$\bullet Eu := \frac{Du + Du^{t}}{2} = e + p \qquad \sigma \in K := \{\tau : f(\tau_{D}) \leq 0\}$$

$$\psi \in \mathbb{M}_{dev}^{N\times N} \qquad \text{with } K \text{ closed convex}$$

$$\sigma = Ae; \text{ div } \sigma = 0 \quad \text{in } \Omega \qquad (f \text{ conv., } f(0) < 0, f \nearrow \infty)$$

$$A : \text{Header's law} \qquad \text{set of admissible stresses}$$

• Flow rule:

A: Hooke's law

 $p \in \mathbb{M}_{dov}^{N \times N}$

$$\begin{split} \dot{p}(t) \in & \mathcal{A}\sigma \!:= \\ \left\{ \tau \!\in \mathbb{M}_{dev}^{\textit{N} \times \textit{N}} \!:\! \exists \lambda \geq 0 \text{ s.t. } \tau = \lambda \frac{\partial f}{\partial \tau}\!\!\left(\sigma(t)\right) \text{ and } \lambda f\!\left(\sigma(t)\right) = 0 \right\} \end{split}$$

 $\dot{p}(t) \in N_K(\sigma(t))$, the normal cone to K at $\sigma(t) \in \partial K(t)$

• b.c. : $u(x, t) = w(x, t) \in AC([0, T]; H^{\frac{1}{2}}(\partial_d \Omega; \mathbb{R}^3))$ $\partial_d \Omega$ Dirichlet bdary: open $/\partial_t \Omega := \partial \Omega \setminus \overline{\partial_d \Omega}$: open, no forces

b.c. on $\partial_d \Omega$ has been relaxed: $p = [w - u] \odot \nu$, $w - u \perp \nu$

A remark about stress admissibility – Lipschitz domain Ω

• From div $\sigma = 0 + \sigma \in L^2(\Omega; \mathbb{M}^{N \times N}_{sym} \cap K)$, we get:

$$(\sigma_D
u)_{ au}$$
 (the tangential part of $\sigma
u$) \in $(K
u)_{ au}$

 \uparrow a priori well defined as an element of $H_{00}^{-\frac{1}{2}}(\partial_d\Omega;\mathbb{R}^N)$

A remark about stress admissibility – Lipschitz domain Ω

• From div $\sigma = 0 + \sigma \in L^2(\Omega; \mathbb{M}^{N \times N}_{sym} \cap K)$, we get:

$$(\sigma_D
u)_{ au}$$
 (the tangential part of $\sigma
u$) $\in (K
u)_{ au}$
 \uparrow a priori well defined as an element of $H_{00}^{-\frac{1}{2}}(\partial_d \Omega; \mathbb{R}^N)$

• Since $\dot{p} = [\dot{w}(t) - \dot{u}(t)] \odot \nu$ on $\partial_d \Omega$, with $[\dot{w}(t) - \dot{u}(t)] \perp \nu$, we expect a boundary flow rule:

$$[\dot{w}(t)-\dot{u}(t)]\in \mathit{N}_{(\mathit{K}
u)_{ au}}((\sigma_{D}
u)_{ au}) ext{ on } \partial_{d}\Omega$$

in fact well defined as an element of $L^\infty(\partial_d\Omega;\mathbb{R}^N)$ \uparrow maybe not unique unless bdary is C^2

A remark about stress admissibility – Lipschitz domain Ω

• From div $\sigma = 0 + \sigma \in L^2(\Omega; \mathbb{M}^{N \times N}_{sym} \cap K)$, we get:

$$(\sigma_D
u)_{ au}$$
 (the tangential part of $\sigma
u$) $\in (K
u)_{ au}$
 \uparrow a priori well defined as an element of $H_{00}^{-\frac{1}{2}}(\partial_d \Omega; \mathbb{R}^N)$

• Since $\dot{p} = [\dot{w}(t) - \dot{u}(t)] \odot \nu$ on $\partial_d \Omega$, with $[\dot{w}(t) - \dot{u}(t)] \perp \nu$, we expect a boundary flow rule:

$$[\dot{w}(t)-\dot{u}(t)]\in \mathit{N}_{(\mathit{K}
u)_{ au}}((\sigma_{D}
u)_{ au}) ext{ on } \partial_{d}\Omega$$

in fact well defined as an element of $L^\infty(\partial_d\Omega;\mathbb{R}^N)$ \uparrow maybe not unique unless bdary is C^2

bulk flow rule

The variational approach to elastoplasticity

Define:

- diss. pot. :
$$H(p) := \sup \{ \sigma_D \cdot p : \sigma \in K \}$$

– dissipation:
$$\mathcal{H}(q) := \int_{\Omega \cup \partial_d \Omega} H\left(rac{q}{|q|}(x)
ight) d|q|$$

- total diss.:
$$\mathcal{D}(0,t;p) := \sup_{part.\ of\ [0,t]} \sum_{i} \mathcal{H}(p(t_{i+1}) - p(t_i))$$

- total energy:
$$E(t) := 1/2 \int_{\Omega} Ae(t) \cdot e(t) dx + \mathcal{D}(0, t; p)$$

At each time
$$t$$
, $(u(t), e(t), \sigma(t) := Ae(t), p(t))$ satisfies

• Global min.:
$$1/2 \int_{\Omega} Ae(t) \cdot e(t) dx \le 1/2 \int_{\Omega} A \eta \cdot \eta dx + \mathcal{H}(q - p(t))$$
 (ve)

• Energy cons.:
$$\frac{dE}{dt}(t) = \int_{\Omega} \sigma(t) \cdot E\dot{w}(t) dx$$

• Define:

- diss. pot. :
$$H(p) := \sup \{ \sigma_D \cdot p : \sigma \in K \}$$

– dissipation:
$$\mathcal{H}(q) := \int_{\Omega \cup \partial_d \Omega} H\left(rac{q}{|q|}(x)
ight) d|q|$$

- total diss.:
$$\mathcal{D}(0,t;p) := \sup_{part.\ of\ [0,t]} \sum_{i} \mathcal{H}(p(t_{i+1}) - p(t_i))$$

- total energy:
$$E(t) := 1/2 \int_{\Omega} Ae(t) \cdot e(t) dx + \mathcal{D}(0, t; p)$$

At each time
$$t$$
, $(u(t), e(t), \sigma(t) := Ae(t), p(t))$ satisfies

• Global min.:
$$1/2 \int_{\Omega} Ae(t) \cdot e(t) dx \le 1/2 \int_{\Omega} A \eta \cdot \eta dx + \mathcal{H}(q - p(t))$$
 (ve)

• Energy cons.:
$$\frac{dE}{dt}(t) = \int_{\Omega} \sigma(t) \cdot E\dot{w}(t) dx$$

ullet Proof through time discretisation: Find (u_i,e_i,p_i) kin.

compatible solving
$$\min \left\{ 1/2 \int_{\Omega} \! Ae \! \cdot \! edx + \mathcal{H}(p-p_{i-1}) \right\}$$

• Define:

- diss. pot. :
$$H(p) := \sup \{ \sigma_D \cdot p : \sigma \in K \}$$

- dissipation:
$$\mathcal{H}(q) := \int_{\Omega \cup \partial_d \Omega} H\left(\frac{q}{|q|}(x)\right) d|q|$$

- total diss.: $\mathcal{D}(0,t;p) := \sup_{part.\ of\ [0,t]} \sum_{i} \mathcal{H}(p(t_{i+1}) - p(t_{i}))$

- total energy:
$$E(t) := 1/2 \int_{\Omega} Ae(t) \cdot e(t) dx + \mathcal{D}(0, t; p)$$

At each time t, $(u(t), e(t), \sigma(t) := Ae(t), p(t))$ satisfies

• Global min.: $1/2 \int_{\Omega} Ae(t) \cdot e(t) dx \le 1/2 \int_{\Omega} A\eta \cdot \eta dx + \mathcal{H}(q-p(t))$ (ve)

• Energy cons.:
$$\frac{dE}{dt}(t) = \int_{\Omega} \sigma(t) \cdot E \dot{w}(t) dx$$

• Proof through time discretisation: Find (u_i, e_i, p_i) kin.

compatible solving
$$\min \left\{ 1/2 \int_{\Omega} Ae \cdot e dx + \mathcal{H}(p - p_{i-1}) \right\}$$

- Note that, if (u,e,p) (resp. (u',e',p')) min. $1/2\int_{\Omega}A\eta\cdot\eta\,dx+\mathcal{H}(q-p)$ (resp p'), then $\|e'-e\|_{L^2}\leq C\left\{\|Ew'-Ew\|_{L^2}+|p'-p|_{\Omega\cup\partial_d\Omega}^{\frac{1}{2}}\right\}_{\mathbb{R}}$

• Define:

- diss. pot. :
$$H(p) := \sup \{ \sigma_D \cdot p : \sigma \in K \}$$

– dissipation:
$$\mathcal{H}(q) := \int_{\Omega \cup \partial_d \Omega} H\left(\frac{q}{|q|}(x)\right) d|q|$$

- total diss.:
$$\mathcal{D}(0,t;p) := \sup_{part.\ of\ [0,t]} \sum_{i} \mathcal{H}(p(t_{i+1}) - p(t_i))$$

- total energy:
$$E(t) := 1/2 \int_{\Omega} Ae(t) \cdot e(t) dx + \mathcal{D}(0, t; p)$$

At each time
$$t$$
, $(u(t), e(t), \sigma(t) := Ae(t), p(t))$ satisfies

• Global min.:
$$1/2 \int_{\Omega} Ae(t) \cdot e(t) dx \le 1/2 \int_{\Omega} A \eta \cdot \eta dx + \mathcal{H}(q - p(t))$$
 (ve)

• Energy cons.:
$$\frac{dE}{dt}(t) = \int_{\Omega} \sigma(t) \cdot E \dot{w}(t) dx$$

• Proof through time discretisation: Find (u_i, e_i, p_i) kin.

compatible solving
$$\min \left\{ 1/2 \int_{\Omega} Ae \cdot e dx + \mathcal{H}(p-p_{i-1}) \right\}$$

- The lower semi-continuity of $\ensuremath{\mathcal{H}}$ is ensured by Reshetnyak's lower semi-continuity theorem

• Global minimality $\Leftrightarrow -\mathcal{H}(q) \leq \int_{\Omega} Ae \cdot \eta \ dx \leq \mathcal{H}(-q)$ $\forall (v, \eta, q) \text{ kin. compat. with b.c. } w = 0$ \downarrow equilibrium + Neumann b.c.+ $\sigma \in K$

• To go further, need to define the duality $\langle \sigma_D, p \rangle$. Not so clear because σ_D not continuous!

Isues of duality

Here σ and p are arbitrary provided that σ satisfies eqm. + Neumann b.c.+stress adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

• First define $\langle \sigma_D, p \rangle$ as a distribution:

$$\langle \sigma_D, p \rangle (\varphi) = -\int_{\Omega} \varphi \sigma \cdot (e - Ew) \ dx - \int_{\Omega} \sigma \cdot [(u - w) \odot \nabla \varphi] \ dx$$
 $\uparrow \text{ OK since } \sigma \in L^N$

Isues of duality

Here σ and p are arbitrary provided that σ satisfies eqm. + Neumann b.c.+stress adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

• First define $\langle \sigma_D, p \rangle$ as a distribution:

$$\langle \sigma_D, p \rangle (\varphi) = -\int_{\Omega} \varphi \sigma \cdot (e - Ew) \ dx - \int_{\Omega} \sigma \cdot [(u - w) \odot \nabla \varphi] \ dx$$
 $\uparrow \text{ OK since } \sigma \in L^N$

- Known result: If $\partial\Omega$ is C^2 and $\partial_{\partial\Omega}[\partial_d\Omega]$ is a C^2 (N-2)-hypersurface, then $\langle \sigma_D, p \rangle$ is a finite Radon meas. on \mathbb{R}^N (Kohn-Temam 1983)
- Thm: Ω Lipschitz. Then $\langle \sigma_D, p \rangle$ is a finite Radon meas. on $\mathbb{R}^N \setminus \partial_{\partial\Omega}[\partial_d\Omega]$ and $|\langle \sigma_D, p \rangle| \leq ||\sigma_D||_{L^{\infty}}|p|, \langle \sigma_D, p \rangle_a = \sigma_D \cdot p_a$

Isues of duality

Here σ and p are arbitrary provided that σ satisfies eqm. + Neumann b.c.+stress adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

• First define $\langle \sigma_D, p \rangle$ as a distribution:

$$\langle \sigma_D, p \rangle (\varphi) = -\int_{\Omega} \varphi \sigma \cdot (e - Ew) \ dx - \int_{\Omega} \sigma \cdot [(u - w) \odot \nabla \varphi] \ dx$$

$$\uparrow \text{ OK since } \sigma \in L^N$$

- Known result: If $\partial\Omega$ is C^2 and $\partial_{\partial\Omega}[\partial_d\Omega]$ is a C^2 (N-2)-hypersurface, then $\langle \sigma_D, p \rangle$ is a finite Radon meas. on \mathbb{R}^N (Kohn-Temam 1983)
- Thm: Ω Lipschitz. Then $\langle \sigma_D, p \rangle$ is a finite Radon meas. on $\mathbb{R}^N \setminus \partial_{\partial\Omega}[\partial_d\Omega]$ and $|\langle \sigma_D, p \rangle| \leq ||\sigma_D||_{L^{\infty}}|p|$, $\langle \sigma_D, p \rangle_a = \sigma_D \cdot p_a$
- Technical point: What do we need for $\langle \sigma_D, p \rangle$ to be a finite Radon meas. on all of \mathbb{R}^N ?
- Open pb.: Can we prove this under the only assumption that e.g. $\mathcal{H}^{N-2}(\partial_{\partial\Omega}[\partial_d\Omega])<\infty$?

• Just using the definition of the duality:

$$\langle \sigma_D, p \rangle_{\lfloor \partial_d \Omega} = (\sigma_D \nu)_\tau (w - u) \mathcal{H}_{\lfloor \partial_d \Omega}^{N-1} \\ \Downarrow$$
 (Ineq)
$$H\left(\frac{p}{|p|}\right) |p| \geq \langle \sigma_D, p \rangle \text{ as measures}$$

Here again σ and p are arbitrary provided that σ satisfies eqm. + Neumann b.c. + stress adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

Just using the definition of the duality:

$$\langle \sigma_D, p \rangle_{\lfloor \partial_d \Omega} = (\sigma_D \nu)_\tau (w - u) \mathcal{H}_{\lfloor \partial_d \Omega}^{N-1}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$
 (Ineq)
$$H\left(\frac{p}{|p|}\right) |p| \geq \langle \sigma_D, p \rangle \text{ as measures}$$

Here again σ and p are arbitrary provided that σ satisfies eqm. + Neumann b.c. + stress adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

• From energy equality + Reshetnyak's lower semi-continuity thm.:

$$\mathcal{H}(\dot{p}) \leq \dot{\mathcal{D}}(0,t,p) = -\int_{\Omega} \sigma(t) \cdot (\dot{e} - E\dot{w})(t) \, dx = \langle \sigma_D, \dot{p} \rangle (\Omega \cup \partial_d \Omega)$$

$$\uparrow \text{l.s.c.} \qquad \uparrow \text{en. eq.} \qquad \qquad \uparrow \text{duality}$$

• Just using the definition of the duality:

$$\begin{split} \langle \sigma_D, p \rangle_{\lfloor \partial_d \Omega} &= (\sigma_D \nu)_\tau (w-u) \mathcal{H}_{\lfloor \partial_d \Omega}^{N-1} \\ & \qquad \qquad \downarrow \\ (\mathsf{Ineq}) & H\left(\frac{p}{|p|}\right) |p| \geq \langle \sigma_D, p \rangle \text{ as measures} \end{split}$$

Here again σ and p are arbitrary provided that σ satisfies eqm. + Neumann b.c. + stress adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

• From energy equality + Reshetnyak's lower semi-continuity thm.:

$$\mathcal{H}(\dot{p}) \leq \dot{\mathcal{D}}(0,t,p) = -\int_{\Omega} \sigma(t) \cdot (\dot{e} - E\dot{w})(t) \ dx = \langle \sigma_D,\dot{p} \rangle (\Omega \cup \partial_d \Omega)$$
 \(\tau\) i.s.c. \(\dagger\)en. eq. \(\dagger\) duality

⇓

Hill's maximal plastic work principle $\langle \sigma_D, \dot{p} \rangle (\Omega \cup \partial_d \Omega) = \sup_{\tau_D \text{ adm.}} \langle \tau_D, \dot{p} \rangle (\Omega \cup \partial_d \Omega)$

• Just using the definition of the duality:

(Ineq)

Here again σ and p are arbitrary provided that σ satisfies eqm. + Neumann b.c. + stress adm. & p is assd. to (u, e, p) kin. compatible with w as b.c.

• From energy equality + Reshetnyak's lower semi-continuity thm.:

$$\mathcal{H}(\dot{p}) \leq \dot{\mathcal{D}}(0,t,p) = -\int_{\Omega} \sigma(t) \cdot (\dot{e} - E\dot{w})(t) \ dx = \langle \sigma_D, \dot{p} \rangle (\Omega \cup \partial_d \Omega)$$

$$\uparrow \text{l.s.c.} \qquad \uparrow \text{en. eq.}$$

Hill's maximal plastic work principle $\langle \sigma_D, \dot{p} \rangle (\Omega \cup \partial_d \Omega) = \sup_{\tau_D \text{ adm.}} \langle \tau_D, \dot{p} \rangle (\Omega \cup \partial_d \Omega)$

• From $H\left(\frac{\dot{p}}{|\dot{p}|}\right)|\dot{p}|=\langle\sigma_D,\dot{p}\rangle$, we recover the flow rule, BOTH in Ω and on $\partial_d\Omega$:

$$\dot{p}_a \in N_K(\sigma_D)$$
 in Ω ; $|\dot{w} - \dot{u}| \in N_{(K
u)_{ au}}((\sigma_D
u)_{ au})$ on $\partial_d\Omega$

Heterogeneous elastoplasticity

A multiphase domain

No ordering property of the K_i 's We will need C^1 interfaces

A multiphase domain

No ordering property of the K_i 's We will need C^1 interfaces

• Define the dissipation :

 $H(x,p) := H_i(p) = \sup\{\sigma_D \cdot p : \sigma_D \in K_i\}$ in each phase i. Since we expect p to be a measure, how do we define H on $\bar{\Omega}_i \cap \bar{\Omega}_j$?

A multiphase domain

No ordering property of the K_i 's We will need C^1 interfaces

destroys l.s.c./ Need to re-establish l.s.c. of \mathcal{H} :

Thm: If (u_n, e_n, p_n) kin. compatible and the natural weak conv. hold $(BD \times L^2 \times \mathcal{M}_b)$ then $\mathcal{H}(p) \leq \liminf_n \mathcal{H}(p_n)$

- Existence of a variational evolution
- We recover all results of homogeneous case + interfacial conditions:

- Existence of a variational evolution
- We recover all results of homogeneous case + interfacial conditions:
- Stress adm.: $(\sigma_D \nu)_{\tau} \in (K_i \nu)_{\tau} \cap (K_j \nu)_{\tau}$

- Existence of a variational evolution
- We recover all results of homogeneous case + interfacial conditions:
- Stress adm.: $(\sigma_D \nu)_{\tau} \in (K_i \nu)_{\tau} \cap (K_i \nu)_{\tau}$
- Flow rule: $\dot{u}_i \dot{u}_j \in N_{(K_i\nu)_{\tau} \cap (K_i\nu)_{\tau}}((\sigma_D\nu)_{\tau})$
- Exact expression of *H* on interfaces is used in deriving (Ineq)

- Existence of a variational evolution
- We recover all results of homogeneous case + interfacial conditions:
- Stress adm.: $(\sigma_D \nu)_{\tau} \in (K_i \nu)_{\tau} \cap (K_i \nu)_{\tau}$
- Flow rule: $\dot{u}_i \dot{u}_j \in N_{(K_i\nu)_{\tau} \cap (K_i\nu)_{\tau}}((\sigma_D\nu)_{\tau})$
- Exact expression of *H* on interfaces is used in deriving (Ineq)

For now unable to find concrete example where the interfacial flow rule makes a difference!

- Existence of a variational evolution
- We recover all results of homogeneous case + interfacial conditions:
- Stress adm.: $(\sigma_D \nu)_{\tau} \in (K_i \nu)_{\tau} \cap (K_i \nu)_{\tau}$
- Flow rule: $\dot{u}_i \dot{u}_j \in N_{(K_i\nu)_{\tau}\cap(K_i\nu)_{\tau}}((\sigma_D\nu)_{\tau})$
- Exact expression of *H* on interfaces is used in deriving (lneg)

For now unable to find concrete example where the interfacial flow rule makes a difference!

• Choice of dissipation is the right one for passing to the zero hardening limit in a model with isotropic linear hardening.

Homogenization

- Rescaled heterogeneous variational evolution: x replaced by x/ε for multiphase torus $\mathcal Y$ with C^1 interfaces.
- Homogenization: with approp. i.c.'s, $\exists \varepsilon_n$ s.t., for all $t \in [0, T]$,

$$\begin{cases} u_n(t) \stackrel{*}{\rightharpoonup} u(t) & \text{weakly* in } BD(\Omega') \\ e_n(t) \stackrel{w-2}{\rightharpoonup} E(t) & \text{two-scale weakly in } L^2(\Omega' \times \mathcal{Y}; \mathbb{M}_{sym}^{N \times N}) \\ p_n(t) \stackrel{w^*-2}{\rightharpoonup} P(t) & \text{two-scale weakly* in } \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{M}_D^N). \end{cases}$$

Here,
$$E(x,y) \mathcal{L}_x^N \otimes \mathcal{L}_y^N + P - Eu \otimes \mathcal{L}_y^N = E_y \mu$$
 in $\Omega' \times \mathcal{Y}$ with $\mu \in \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{R}^N))$, $E_y \mu \in \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{M}_{sym}^{N \times N})$, $\mu(F \times \mathcal{Y}) = 0$, $\forall F$ Borel $\subseteq \Omega'$.

Homogenization

- Rescaled heterogeneous variational evolution: x replaced by x/ε for multiphase torus $\mathcal Y$ with C^1 interfaces.
- Homogenization: with approp. i.c.'s, $\exists \varepsilon_n$ s.t., for all $t \in [0, T]$,

$$\begin{cases} u_n(t) \stackrel{*}{\rightharpoonup} u(t) & \text{weakly* in } BD(\Omega') \\ e_n(t) \stackrel{w-2}{\rightharpoonup} E(t) & \text{two-scale weakly in } L^2(\Omega' \times \mathcal{Y}; \mathbb{M}_{sym}^{N \times N}) \\ p_n(t) \stackrel{w^*-2}{\rightharpoonup} P(t) & \text{two-scale weakly* in } \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{M}_D^N). \end{cases}$$

Here, $E(x,y) \mathcal{L}_x^N \otimes \mathcal{L}_y^N + P - Eu \otimes \mathcal{L}_y^N = E_y \mu$ in $\Omega' \times \mathcal{Y}$ with $\mu \in \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{R}^N))$, $E_y \mu \in \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{M}_{sym}^{N \times N})$, $\mu(F \times \mathcal{Y}) = 0$, $\forall F$ Borel $\subseteq \Omega'$.

• Further (u(t), E(t), P(t)) is a two-scale quasistatic evolution: defined as before with explicit *y*-dependence; for example:

dissipation
$$\mathcal{H}^{hom}(Q) := \int_{\mathcal{V} imes \Omega \cup \partial_d \Omega} H\left(y, rac{Q}{|Q|}(x,y)
ight) d|Q|$$

Homogenization

- Rescaled heterogeneous variational evolution: x replaced by x/ε for multiphase torus \mathcal{Y} with C^1 interfaces.
- Homogenization: with approp. i.c.'s, $\exists \varepsilon_n$ s.t., for all $t \in [0, T]$,

$$\begin{cases} u_n(t) \stackrel{*}{\rightharpoonup} u(t) & \text{weakly* in } BD(\Omega') \\ e_n(t) \stackrel{w-2}{\rightharpoonup} E(t) & \text{two-scale weakly in } L^2(\Omega' \times \mathcal{Y}; \mathbb{M}_{sym}^{N \times N}) \\ p_n(t) \stackrel{w^*-2}{\rightharpoonup} P(t) & \text{two-scale weakly* in } \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{M}_D^N). \end{cases}$$

Here, $E(x,y) \mathcal{L}_x^N \otimes \mathcal{L}_y^N + P - Eu \otimes \mathcal{L}_y^N = E_y \mu$ in $\Omega' \times \mathcal{Y}$ with $\mu \in \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{R}^N))$, $E_y \mu \in \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{M}_{sym}^{N \times N})$, $\mu(F \times \mathcal{Y}) = 0$, $\forall F$ Borel $\subseteq \Omega'$.

• Further (u(t), E(t), P(t)) is a two-scale quasistatic evolution: defined as before with explicit y-dependence; for example:

$$\text{dissipation } \mathcal{H}^{hom}(Q) := \int_{\mathcal{Y} \times \Omega \cup \partial_d \Omega} H\left(y, \frac{Q}{|Q|}(x,y)\right) d|Q|$$

• Not possible to eliminate y-dependence

Homogenization

- Rescaled heterogeneous variational evolution: x replaced by x/ε for multiphase torus $\mathcal Y$ with C^1 interfaces.
- Homogenization: with approp. i.c.'s, $\exists \varepsilon_n$ s.t., for all $t \in [0, T]$,

$$\begin{cases} u_n(t) \stackrel{*}{\rightharpoonup} u(t) & \text{weakly* in } BD(\Omega') \\ e_n(t) \stackrel{w-2}{\rightharpoonup} E(t) & \text{two-scale weakly in } L^2(\Omega' \times \mathcal{Y}; \mathbb{M}_{sym}^{N \times N}) \\ p_n(t) \stackrel{w^*-2}{\rightharpoonup} P(t) & \text{two-scale weakly* in } \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{M}_D^N). \end{cases}$$

Here, $E(x,y) \mathcal{L}_x^N \otimes \mathcal{L}_y^N + P - Eu \otimes \mathcal{L}_y^N = E_y \mu$ in $\Omega' \times \mathcal{Y}$ with $\mu \in \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{R}^N))$, $E_y \mu \in \mathcal{M}_b(\Omega' \times \mathcal{Y}; \mathbb{M}_{sym}^{N \times N})$, $\mu(F \times \mathcal{Y}) = 0$, $\forall F$ Borel $\subseteq \Omega'$.

• Further (u(t), E(t), P(t)) is a two-scale quasistatic evolution: defined as before with explicit y-dependence; for example:

$$\text{dissipation } \mathcal{H}^{hom}(Q) := \int_{\mathcal{Y} \times \Omega \cup \partial_d \Omega} H\left(y, \frac{Q}{|Q|}(x,y)\right) d|Q|$$

- Not possible to eliminate y-dependence
- In essence, $P(\cdot, \cdot, y)$ is, for each $y \in \mathcal{Y}$, an internal var. $\Rightarrow \exists$ flow rule in y that expresses normality at the micro level......

Hardening

• Additional variable: $\zeta(t,x)$ measures change of convex of plasticity $K(t,x) := (1 - \zeta(t,x))K(x)$, z dual variable to ζ

- Additional variable: $\zeta(t,x)$ measures change of convex of plasticity $K(t,x) := (1-\zeta(t,x))K(x)$, z dual variable to ζ
- Assd. dissipation: $\hat{H}(x, p, z) = \begin{cases} z, & H(x, p) \leq z \\ \infty, & \text{else} \end{cases}$

- Additional variable: $\zeta(t,x)$ measures change of convex of plasticity $K(t,x) := (1 \zeta(t,x))K(x)$, z dual variable to ζ
- Assd. dissipation: $\hat{H}(x, p, z) = \begin{cases} z, & H(x, p) \leq z \\ \infty, & \text{else} \end{cases}$
- Vanishingly small hardening $\zeta(t) := -h^2 z(t)$ with "flow rule": linear increase of plast. convex as a fct. of the plastic work accumulated

$$z(t,x) = \int_0^t H(x,\dot{p}(\tau,x)) d\tau$$

- Additional variable: $\zeta(t,x)$ measures change of convex of plasticity $K(t,x) := (1 \zeta(t,x))K(x)$, z dual variable to ζ
- Assd. dissipation: $\hat{H}(x, p, z) = \begin{cases} z, & H(x, p) \leq z \\ \infty, & \text{else} \end{cases}$
- Vanishingly small hardening $\zeta(t) := -h^2 z(t)$ with "flow rule": linear increase of plast. convex as a fct. of the plastic work accumulated

$$z(t,x) = \int_0^t H(x,\dot{p}(\tau,x)) d\tau$$

$$\updownarrow \text{ Not so hard to see}$$
Variational evolution for

$$(u_h, e_h, p_h, z_h) \in H^1(\Omega; \mathbb{R}^N) \times L^2(\Omega; \mathbb{M}_{sym}^{N \times N}) \times L^2(\Omega; \mathbb{M}_{dev}^{N \times N}) \times L^2(\Omega):$$
 with i.c. $\equiv 0$

- Global min.: $1/2 \int_{\Omega} A\eta \cdot \eta dx + h^2/2 \int_{\Omega} y^2 dx + \|y z\|_{L^1}$ among all (v, η, q, y) with $Ev = \eta + q$, $H(x, q) \leq z$
- Energy cons. : same as before with $E_h(t) := 1/2 \int_{\Omega} A e_h(t) \cdot e_h(t) dx + h^2/2 \int_{\Omega} z_h^2(t) dx + \int_{\Omega} z_h(t) dx$

Heterogeneous plasticity as limit of model with isotropic hardening $h \searrow 0$

- Usual estimates: $p_h \stackrel{\mathcal{M}_b}{\rightharpoonup} p$; $u_{h_t} \stackrel{SBV_p}{\rightharpoonup} u$; $e_{h_t} \stackrel{L^2}{\rightharpoonup} e$ with (u, e, p) kim. compatible.
- Pass to the limit in EL eqs.: div $\sigma_h = 0$; $\sigma_h \nu = 0$ on $\partial \Omega \setminus \overline{\partial_d \Omega}$; $(\sigma_h)_D \in (1 \zeta_h)K$

Heterogeneous plasticity as limit of model with isotropic hardening $h \searrow 0$

- Usual estimates: $p_h \stackrel{\mathcal{M}_b}{\rightharpoonup} p$; $u_{h_t} \stackrel{SBV_p}{\rightharpoonup} u$; $e_{h_t} \stackrel{L^2}{\rightharpoonup} e$ with (u, e, p) kim. compatible.
- Pass to the limit in EL eqs.: div $\sigma_h = 0$; $\sigma_h \nu = 0$ on $\partial \Omega \setminus \overline{\partial_d \Omega}$; $(\sigma_h)_D \in (1 \zeta_h)K$
- Apply \bigcirc $\Rightarrow -\mathcal{H}(q) \leq \int_{\Omega} \sigma(t) \cdot \eta \ dx \leq \mathcal{H}(-q), \ \forall (v, \eta, q) \ \text{kin.}$ comp. \Rightarrow Global min.

Requires the correct dissipation functional

Heterogeneous plasticity as limit of model with isotropic hardening $h \searrow 0$

- Usual estimates: $p_h \stackrel{\mathcal{M}_b}{\rightharpoonup} p$; $u_{h_t} \stackrel{SBV_p}{\rightharpoonup} u$; $e_{h_t} \stackrel{L^2}{\rightharpoonup} e$ with (u, e, p) kim. compatible.
- Pass to the limit in EL eqs.: div $\sigma_h = 0$; $\sigma_h \nu = 0$ on $\partial \Omega \setminus \overline{\partial_d \Omega}$; $(\sigma_h)_D \in (1 \zeta_h)K$
- Apply \bigcirc $\Rightarrow -\mathcal{H}(q) \leq \int_{\Omega} \sigma(t) \cdot \eta \ dx \leq \mathcal{H}(-q), \ \forall (v, \eta, q) \ \text{kin.}$ comp. \Rightarrow Global min.

Requires the correct dissipation functional

• Energy conservation in the limit easy consequence of l.s.c. dissn.

$$+ \mathcal{D}(0,t;p) \leq \hat{\mathcal{D}}(0,t;p)$$

