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Abstract

We provide a complete proof of the result announced twenty years ago in
[5], namely the characterization in two dimensions of the set of the effective
conductivities obtained by mixing two anisotropic conducting materials with
arbitrary orientation. We also provide a complete proof of the characterization
(also already announced in [5]) of the sets of conducting materials with arbitrary
orientation which are stable under H-convergence in two dimensions.
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1 Introduction

In the fall of 2007, Graeme Milton was awarded the prestigious William Prager
Medal from the Society of Engineering Science. It is our pleasure and honor to write
this article as a pale tribute to his impressive scientific achievements.

The Eighties witnessed a flurry of investigations – spearheaded largely by Graeme
Milton’s groundbreaking work – on bounds for two-phase mixtures of conducting
and/or elastic materials. The effort has since subsided for want of new methods, with
the notable exception of V. Nesi’s two-dimensional work based on quasi-conformal
mappings; see [12] and [1].
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At the time, one concern was the determination of the set of all mixtures of two
anisotropic conducting materials, when both the volume fractions and the orienta-
tions of the materials are arbitrary. The first result in that direction was that of
A. Cherkaev and K. Lurie [6] who proposed a characterization of that set in two
dimensions. Unfortunately, their paper contained a flaw and the announced result
was incorrect. This prompted us to revisit the problem and to give in [5] a full
characterization of the set in two dimensions. (The original paper [6] was amended
in [7] at a later time.) Our paper sketched the argument but it was certainly not
meant to remain celibate for so long. It actually contained several references to a
more complete paper allegedly in the process of being written at that time. The
completion of that companion paper has remained a pious and largely forgotten wish
for twenty years, in spite of the contemporaneous use of its results in [4] and [8].
When Graeme Milton was immersed in the writing of his treatise on bounds [9], his
rendering of part of the argument in Chapter 22.5 relied solely on oral expositions
of that work.

We now put an end to [5]’s solitude and provide a complete, albeit brief account
of the characterization. Of course, we benefit from hindsight and do not dwell on
features of homogenization that should be part of the familiar of any concerned
reader. The less familiar readers, or those who do not read French and therefore
cannot benefit from [10], may wish to refer to its english translation [11], or to [2],
Chapter 1, for a rather thorough presentation of the tools of H-convergence. Those
familiar with the concept of G-convergence [13] can freely substitute ‘G for H’ since
we deal here with symmetric matrices.

The present paper is organized as follows. Section 2 sets the framework and
formulates the characterization result (Theorem 2.3). It also formulates the charac-
terization of the sets of two-dimensional conducting materials which are stable under
H-convergence, when the definition of the set is independent of the orientation of
the material (Theorem 2.7), a result which is interesting in and of itself. The proofs
are given in Section 3.

The following notation is used throughout.
If A and B are 2× 2 symmetric matrices, A ≤ B means that Ae.e ≤ Be.e for all

e ∈ R2.
For some fixed 0 < α < β <∞, we denote by Ms(α, β) the set of 2×2 symmetric

matrices M with αI ≤M ≤ βI, where I is the identity 2× 2 matrix.

The matrix R =
(

0 1
−1 0

)
denotes the −π/2 rotation matrix, so that, if ϕ is

a R2-valued field,

−div Rϕ = curl ϕ and curl Rϕ = div ϕ,

with curl ϕ defined by curl ϕ := ∂ϕ1/∂x2 − ∂ϕ2/∂x1.
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2 Framework and results

The setting is two-dimensional, 0 < α < β < ∞ are given, and (e1, e2) is a fixed
orthonormal basis of R2. Two anisotropic materialsA = α1e1 ⊗ e1 + α2e2 ⊗ e2,

B = β1e1 ⊗ e1 + β2e2 ⊗ e2,
(2.1)

are considered and it is assumed, with no loss of generality, that, for some 0 < α < β,

α ≤ α1 ≤ α2 ≤ β, α ≤ β1 ≤ β2 ≤ β, α1α2 ≤ β1β2. (2.2)

Remark that we may as well set

α = inf{α1, β1}, β = sup{α2, β2}.

We will loosely refer to the material with conductivity A as the A-material; idem
for B.

A mixture of those two materials is characterized at each point x by a marker at
that point, i.e., by the characteristic function χ(x) ∈ {0, 1} of, say, the A-material,
together with the orientation of the material at that point, i.e., by a rotation matrix
R(x) ∈ SO(2). Thus, the conductivity of the mixture at any point x ∈ R2 is

A(x) := RT (x) (χ(x)A+ (1− χ(x))B)R(x), (2.3)

and we further assume measurability of the matrix A(x), or, equivalently of χ(x)
and R(x). Note that there is no loss of generality in assuming in (2.1) that the
matrices A and B are diagonalizable in the same orthonormal basis (e1, e2). Indeed
if A is diagonalizable in the orthonormal basis (e1, e2) while B is diagonalizable in
the orthonormal basis (f1, f2), and if J is the rotation matrix which permits one to
pass from the second to the first basis, any mixture of the form

A(x) = RT (x)(χ(x)A+ (1− χ(x))B)R(x)

can be written in the form (2.1) (2.3) upon replacing R(x) by JR(x) whenever
χ(x) = 0.

In the spirit of the H-convergence, we consider an ε-indexed sequence of conduc-
tivities of that type, i.e., a sequence

Aε = RT
ε (χεA+ (1− χε)B)Rε

with obvious notation. According to H-convergence [11], there exists a subsequence
of {ε}, still labeled by {ε}, and a matrix A0 ∈ L∞(R2; Ms(α, β)), such that
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Lemma 2.1 For every open bounded subset Ω of R2 and any sequence wε ∈ L2(Ω; R2)
that satisfies {

wε ⇀ w weakly in L2(Ω; R2),

qε := Aεwε ⇀ q weakly in L2(Ω; R2),

while {
curl wε lies in a compact set of H−1(Ω),

div qε lies in a compact set of H−1(Ω),

we have
q = A0w,

where the matrix A0 is the H-limit of the sequence Aε.

The matrix A0 should be viewed as the overall, effective, or homogenized matrix
associated to the (sequence of) mixtures Aε; see e.g. [11], [2]. From now onward,
we will call such a matrix an effective conductivity.

The bounding problem alluded to in the introduction consists in characterizing
the set of all such effective conductivities, henceforth referred to as the effective set.
More precisely, the effective set is the H-closure of the matrices of the form (2.3), or
equivalently the set of those matrices A0 ∈ L∞(R2; Ms(α, β)) such that there exists
a sequence of matrices of the form (2.3) that H-converges to A0.

The result announced in [5], correcting an earlier result of [6], is precisely the
characterization of that set. Its proof is merely sketched in [5].

We define the following two subsets Lwo and Lbo of L∞(R2; Ms(α, β)), where
the indices wo and bo respectively stand for “well ordered” and “badly ordered”.

Definition 2.2 If α1α2 6= β1β2, the set Lwo is defined as the set of points (λ1, λ2) ∈
R2 that satisfy 

α1α2 ≤ λ1λ2 ≤ β1β2,

(β1 − α1)λ1λ2 + (β2 − α2)α1β1

β1β2 − α1α2
≤ inf(λ1, λ2) ≤

≤ sup(λ1, λ2) ≤ λ1λ2(β1β2 − α1α2)
(β1 − α1)λ1λ2 + (β2 − α2)α1β1

,

(2.4)
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while the set Lbo is defined as the set of points (λ1, λ2) ∈ R2 that satisfy

α1α2 ≤ λ1λ2 ≤ β1β2,

λ1λ2(β1β2 − α1α2)
(β2 − α2)λ1λ2 + (β1 − α1)α2β2

≤ inf(λ1, λ2) ≤

≤ sup(λ1, λ2) ≤ (β2 − α2)λ1λ2 + (β1 − α1)α2β2

β1β2 − α1α2
.

(2.5)

If α1α2 = β1β2, the set Lwo = Lbo is the set of points (λ1, λ2) ∈ R2 that satisfy
λ1λ2 = α1α2 = β1β2,

inf{α1, β1} ≤ inf(λ1, λ2) ≤ sup(λ1, λ2) ≤ sup{α2, β2}.
(2.6)

We then define the sets Lwo and Lbo by

Lwo :=
{
C ∈ L∞(R2; Ms(α, β)) :

the eigenvalues (λ1(x), λ2(x)) of C(x) belong to Lwo a.e.} ,

Lbo :=
{
C ∈ L∞(R2; Ms(α, β)) :

the eigenvalues (λ1(x), λ2(x)) of C(x) belong to Lbo a.e.
}
.

The characterization of the effective set is the following

Theorem 2.3 Under assumption (2.2), if A and B are well ordered, i.e., if

α1 ≤ β1 and α2 ≤ β2,

then the effective set is Lwo, while if A and B are badly ordered, i.e., if either

α1 ≤ β1 and α2 > β2,

or
α1 > β1 and α2 ≤ β2,

then the effective set is Lbo.

As an obvious aside, note that, if α1α2 = β1β2, then, in view of (2.2), A and B
are badly ordered if A 6= B.
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Remark 2.4 The set Lwo is non-empty under the sole assumption (2.2), while the
set Lbo is non-empty under the further assumption that A and B are badly ordered.
Indeed, when (2.2) holds, the left-hand side of the second line of (2.4) is smaller than
the right-hand side of its third line for λ1λ2 = α1α2 and for λ1λ2 = β1β2. The same
holds for (2.5). Also the affine functions Ad+B which appear in the inequalities (2.4)
and (2.5) are positive on the interval α1α2 ≤ λ1λ2 ≤ β1β2 since they are positive at
its extremities. The non-empty character of Lwo then follows from the fact that the
inequality (Ad+B)2 ≤ C2d holds on an interval of R+whenever it holds at its end
points. On the other hand, the non-empty character of Lbo is proved by re-writing
the inequality C2d ≤ (Ad + B)2 in the form C2(e − B)/A ≤ e2 and by observing
that, if AB ≤ 0, the latter inequality holds on an interval of R+ whenever it holds
at its end points. ¶

We now graphically represent the sets Lwo and Lbo. This we will do in two
different representations respectively labeled the (λ1, λ2) and the (d, λ) representa-
tions.

In the two figures below, we choose, for the well ordered case, α1 = 1 ≤ β1 = 2
and α2 = 3 ≤ β2 = 4; for the first badly ordered case, α1 = 1 ≤ β1 = 2 and
α2 = 4 > β2 = 3; for the second badly ordered case, α1 = 2 > β1 = 1 and
α2 = 3 ≤ β2 = 8; note that (2.2) is satisfied in the three cases.

The (λ1, λ2) representation is the classical representation of the sets Lwo and
Lbo, where each point (λ1, λ2) is represented as a pair of points P and P ′ with
respective coordinates (λ1, λ2) and (λ2, λ1) which are symmetric with respect to the
line λ1 = λ2. Figure 2.1 plots the three cases detailed above in that representation.

The (d, λ) representation represents each point (λ1, λ2) of the sets Lwo and
Lbo as a pair of points P and P ′ with respective coordinates (λ1λ2, inf{λ1, λ2}) and
(λ1λ2, sup{λ1, λ2}). The line λ1 = λ2 becomes the parabola λ =

√
d and straight

vertical lines represent matrices with equal determinant. The points P and P ′ are
mapped onto one another through the map (d, λ) 7→ (d, d/λ). Once P is plotted, P ′

is graphically obtained as follows: intersect the straight vertical line going through
P with the straight line going through the origin and the intersection point of the
horizontal line going through P with the parabola λ =

√
d. Figure 2.2 plots the three

cases detailed above in that representation.

Remark 2.5 The result of Theorem 2.3 (as well as most of the results announced in
[5] and proved in the present paper) deals with mixtures of two symmetric conduct-
ing materials in two dimensions. Keeping the dimension equal to two, this result
was extended in [4] to the case of mixtures of an arbitrary number of conducting
materials. It was also extended in [8] to the case of mixtures of two non-symmetric
materials. To this effect, Graeme Milton remarks that H-convergence is stable un-
der the transformation A→ (aA+ bRT )(cI+dRT A)−1 where a, b, c and d are real
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Figure 2.1: (λ1, λ2) representation: well-ordered case; badly ordered case α2 > β2;
badly ordered case α1 > β1.

7



0 1 2 3 4 5 6 7 8
0

1

2

3

4

d=λ
1
λ

2
λ 1,λ

2

0 1 2 3 4 5 6
0

1

2

3

4

d=λ
1
λ

2

λ 1,λ
2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

d=λ
1
λ

2

λ 1,λ
2

Figure 2.2: (d, λ) representation: well-ordered case; badly ordered case α2 > β2;
badly ordered case α1 > β1.
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numbers. Then a convenient choice of those parameters allows him to transform
simultaneously two non-symmetric matrices into symmetric ones, to which he can
apply Theorem 2.3 above. ¶

We conclude this Section by a result that will be used in the proof of Theorem
2.3 but which is also interesting in and of itself, namely the characterization of the
sets of two-dimensional conducting materials which are stable under H-convergence,
when the definition of the set is independent of the orientation of the material (or in
other terms only depends on the eigenvalues of the material). This characterization
will use the (d, λ) representation.

We first define the notion of stability under H-convergence through the following

Definition 2.6 A subset S of L∞(R2; Ms(α, β)) is H-stable if and only if all
H-limits of H-converging sequences of elements of S belong to S.

Consider γ and δ with α2 ≤ γ ≤ δ ≤ β2 and a positive and bounded function ϕ
which is continuously differentiable on [γ, δ]. We define the sets K and K by

K:={(λ1, λ2)∈ [α, β]2 :γ ≤ λ1λ2 ≤ δ,
λ1λ2

ϕ(λ1λ2)
≤ inf(λ1λ2) ≤ sup(λ1λ2) ≤ ϕ(λ1λ2)},

(2.7)
and

K :=
{
C∈L∞(R2; Ms(α, β)) : the eigenvalues (λ1(x),λ2(x)) of C(x) belong toK a.e.

}
.

(2.8)
The following result characterizes the sets of this form which are stable under

H-convergence.

Theorem 2.7 The set K is H-stable if and only if{
the function d ∈ [γ, δ]→ ϕ(d) is concave,

the function d ∈ [γ, δ]→ d/ϕ(d) is convex.
(2.9)

Remark 2.8 In the statement of Theorem 2.7, there is no loss of generality in
assuming that the set K is of the form (2.7), when the definition of the set K is
given by (2.8) for a set K which is sufficiently smooth, and whose definition is
independent of the orientation of the material (or in other terms only depends on
the eigenvalues of the material).

9



Indeed any subsetK of Ms(α, β) whose definition is given in terms of the eigenval-
ues can equivalently be represented as a set of pairs of points in the (d, λ) representa-
tion. Defining the functions ψ and ϕ by ψ(d) := inf{λ1, λ2} and ϕ(d) := sup{λ1, λ2}
for all λ1 and λ2 in K with λ1λ2 = d, one necessarily has ψ(d)ϕ(d) = d for every
d, since, for every λ1 and λ2, inf{λ1, λ2} sup{λ1, λ2} = λ1λ2. Moreover, when K
is a subset of Ms(α, β), the functions ψ and ϕ are bounded from below by α > 0
and from above by β <∞. Finally let us assume for the sake of simplicity that the
set of the d’s for which there exists λ1 and λ2 in K with λ1λ2 = d is the interval
(γ, δ) with α2 ≤ γ ≤ δ ≤ β2 (this is what we mean by “a set K which is sufficiently
smooth”; of course, more complex situations can be easily handled).

We now consider for every fixed d ∈ (γ, δ) the two constant materials
µ1f1⊗ f1 +µ2f2⊗ f2 and µ2f1⊗ f1 +µ1f2⊗ f2, with µ1 = ψ(d), µ2 = ϕ(d) (so that
µ1µ2 = d), and (f1, f2) an orthonormal basis of R2. It results from the first para-
graph of Subsection 3.1 that the rank-one layering in direction f1 (or in direction
f2) of those two materials with volume fraction θ (0 ≤ θ ≤ 1) of the first mate-
rial produces, when θ varies, all the materials with constant effective conductivity
λ1f1⊗ f1 + λ2f2⊗ f2 where λ1λ2 = d and ψ(d) ≤ inf{λ1, λ2} ≤ sup{λ1, λ2} ≤ ϕ(d).
Passing from constant materials to variable measurable materials with arbitrary ori-
entation is a classical argument. Thus, if the set K defined by (2.8) from the set K
is H-stable, the set K necessarily contains the set K̂ defined by

K̂ :=
{
C∈L∞(R2; Ms(α, β)) : the eigenvalues (λ1(x),λ2(x)) of C(x) belong to K̂ a.e.

}
,

where the set K̂ is defined by

K̂:={(λ1, λ2)∈ [α, β]2 :γ ≤ λ1λ2 ≤ δ, ψ(λ1λ2)≤ inf(λ1λ2) ≤ sup(λ1λ2) ≤ ϕ(λ1λ2)}.

Since the result of Theorem 2.7 is about H-stable sets, there is therefore no loss
of generality in assuming that the set K is of the form (2.7). ¶

Remark 2.9 We assumed that the positive bounded function ϕ is continously dif-
ferentiable for the sake of simplicity. Actually, the proof given in Subsection 3.3
shows that if ϕ is continuous (or even measurable) and if the set K is H-stable, then
the fonction ϕ(d) is concave and the fonction d/ϕ(d) is convex, while conversely
assuming that the fonction ϕ(d) is concave and that the fonction d/ϕ(d) is convex
suffices to prove that the set K is H-stable. ¶
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3 Proofs

3.1 Layering and attainability

This Subsection provides a rapid proof of the attainability of the sets Lwo and Lbo
introduced in Definition 2.2.

Lemma 3.1 Under assumption (2.2), every element of the sets Lwo and Lbo is
the H-limit of a sequence of conductivities of the form (2.3).

Proof. Recall (see e.g. [15]) that, if (f1, f2) is an orthonormal basis of R2, the
rank-one layering of γ1f1 ⊗ f1 + γ2f2 ⊗ f2 with δ1f1 ⊗ f1 + δ2f2 ⊗ f2 in direction f1

with volume fraction θ of the first material produces the effective conductivity

(θ/γ1 + (1− θ)/δ1)−1 f1 ⊗ f1 + (θγ2 + (1− θ)δ2) f2 ⊗ f2,

while the rank-one layering in direction f2 with volume fraction θ of the first material
produces the effective conductivity

(θγ1 + (1− θ)δ1)f1 ⊗ f1 + (θ/γ2 + (1− θ)/δ2)−1f2 ⊗ f2.

Note that, whenever γ1γ2 = δ1δ2, then the effective conductivities produced above
also share that common value for their determinant.

Now, take C to be a constant element of Lwo (resp. Lbo), with eigenvectors
(f1, f2) and eigenvalues (λ1, λ2) satisfying the equalities in the first inequality of the
second line and in the last inequality of the third line of (2.4) (resp. (2.5)) (and
which therefore belong to the boundary of Lwo (resp. Lbo)) (see Figures 2.1 and 2.2
for a pictorial representation of those boundaries). It is easily checked that C is the
effective conductivity associated to the rank-one layering, for some volume fraction
θ ∈ [0, 1], of α1f1⊗f1 +α2f2⊗f2 with β1f1⊗f1 +β2f2⊗f2 in direction f1 (resp. f2).
Note that, as θ varies between 0 and 1, the determinant of the effective conductivity
resulting from this layering varies continuously between α1α2 and β1β2.

Then, take C to be a constant element of Lwo (resp. Lbo), with eigenval-
ues (λ1, λ2) in Lwo (resp. Lbo) and associated eigenvectors (f1, f2). Then its
determinant λ1λ2 lies between α1α2 and β1β2 and thus, the hyperbola xy = λ1λ2

intersects the boundary of Lwo (resp. Lbo) at two points (µ1, µ2), and (µ2, µ1)
with µ1µ2 = λ1λ2 (see once again Figures 2.1 and 2.2). It then suffices to layer
µ1f1 ⊗ f1 + µ2f2 ⊗ f2 with µ2f1 ⊗ f1 + µ1f2 ⊗ f2 in direction f1 or f2 to gener-
ate all conductivities that are diagonal in the basis (f1, f2) with eigenvalues on the
hyperbola xy = λ1λ2 inside Lwo (resp. Lbo).

In conclusion, a rank-2 lamination (see e.g. [16]) permits one to recover all
constant elements of Lwo and of Lbo as effective conductivities associated to a
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mixture of the A-material with the B-material. Passing from constant elements to
arbitrary elements of Lwo and of Lbo is by now a classical argument based on the
local and metrizable character of H-convergence; we refer the interested reader to
e.g. [16]. ¶

3.2 First results

The proofs below will appeal to a few known results that we briefly collect in

Lemma 3.2 Let Aε and Bε be two sequences in L∞(R2; Ms(α, β)) which respectively
H-converge to A0 and B0 (also in L∞(R2; Ms(α, β))). Then

1. if Aε ≤ Bε a.e., then A0 ≤ B0 a.e. (see e.g. [11]);

2. if Aε⇀A weakly-? in L∞(R2; Ms(α, β)), then A0 ≤ A a.e., while, if A−1
ε ⇀A−1

weakly-? in L∞(R2; Ms(β−1, α−1)), then A ≤ A0 a.e. (see e.g. [11]);

3. for every open bounded subset Ω of R2, if ϕ ∈ C∞0 (Ω), ϕ ≥ 0, and vε⇀v weakly
in H1(Ω), then [3]

lim inf
ε

∫
Ω
ϕAε∇vε.∇vεdx ≥

∫
Ω
ϕA0∇v.∇vdx;

4. Aε/ detAε
H
⇀ A0/ detA0 (this famous result is generally attributed to J.B.

Keller or A.M. Dykhne; a proof can be found in e.g. [5]);

5. if detAε ≥ γ (resp. detAε ≤ γ), then detA0 ≥ γ (resp. detA0 ≤ γ) (this
results from items 1 and 4 above).

We then prove preliminary results, namely the stability by H-convergence of
special sets.

For a and b in R, we introduce the following sets (note that they are restrictions
on a and b in order for those sets to be non-empty)

L≥(a, b) :=
{

(λ1, λ2) ∈ [α, β]2 : inf {λ1, λ2} ≥ aλ1λ2 + b
}
,

L≤(a, b) :=
{

(λ1, λ2) ∈ [α, β]2 : sup {λ1, λ2} ≤ aλ1λ2 + b
}
.

Then we define

L≥(a, b) :=
{
C ∈ L∞(R2; Ms(α, β)) :

the eigenvalues (λ1(x), λ2(x)) of C(x) belong to L≥(a, b) a.e.
}
,

L≤(a, b) =
{
C ∈ L∞(R2; Ms(α, β)) :

the eigenvalues (λ1(x), λ2(x)) of C(x) belongs to L≤(a, b) a.e.
}
.
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Remark 3.3 Since the set L≥(a, b) is defined by 1 ≥ aλ1 +b/λ2 and 1 ≥ aλ2 +b/λ1,
the set L≥(a, b) is equivalently defined as

L≥(a, b) =
{
A ∈ L∞(R2; Ms(α, β)) : I ≥ aA(x) + bA(x)/detA(x) a.e.

}
.

Similarly, the set L≤(a, b) is equivalently defined as

L≤(a, b) =
{
A ∈ L∞(R2; Ms(α, β)) : I ≤ aA(x) + bA(x)/detA(x) a.e.

}
.

¶

Then

Lemma 3.4 If a ≥ 0 and b ≥ 0, then L≥(a, b) is H-stable, while, if ab ≤ 0, L≤(a, b)
is H-stable.

Proof. Throughout this proof we set Cε := Aε/ detAε.
Consider first the case where a and b are both non-negative. Then, according to

Remark 3.3, together with item 4 of Lemma 3.2, it suffices to show that the relation

I ≥ aAε + b Cε (3.1)

is preserved by H-convergence. But, passing to the weak-? limit in (3.1), we obtain

I ≥ aA+ b C

in the notation of item 2 of Lemma 3.2. Since, according to that same item and to
item 4,

A ≥ A0, C ≥ C0 = A0/ detA0,

the H-stability of L≥(a, b) is established when a ≥ 0 and b ≥ 0.
Consider now the case where ab ≤ 0. As in the previous proof, it suffices to show

that the relation
I ≤ aAε + bCε (3.2)

is preserved by H-convergence. Since Aε and Cε play symmetric roles (indeed
Cε/detCε = Aε), we may as well investigate only the case a ≥ 0, b ≤ 0. Con-
sider for every open bounded subset Ω of R2 a sequence uε ∈ H1(Ω) satisfying, for
some λ ∈ R2, 

∇uε⇀λ weakly in L2(Ω; R2),

Aε∇uε⇀A0λ weakly in L2(Ω; R2),

div Aε∇uε lies in a compact set of H−1(Ω);
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the existence of such a sequence (called a corrector sequence) is well-known; see e.g.
[11].

Then, for any ϕ ∈ C∞0 (Ω), ϕ ≥ 0, (3.2) implies that∫
Ω
ϕ|∇uε|2dx− b

∫
Ω
ϕ Cε∇uε.∇uεdx ≤ a

∫
Ω
ϕAε∇uε.∇uεdx. (3.3)

But the lower semi-continuity for the first term, the assumption that b ≤ 0, together
with items 3 and 4 of Lemma 3.2 for the second term, and finally the div-curl lemma
(see [14]) for the third term yield∫

ϕλ2dx− b
∫
ϕC0λ.λdx ≤

∫
ϕA0λ.λdx.

In view of item 4 of Lemma 3.2, the arbitrariness of Ω, ϕ and λ permits us to
conclude to the H-stability of L≤(a, b) when ab ≤ 0. ¶

3.3 Proof of Theorem 2.7

Define the function ϕ̂ by ϕ̂(d) = d/ϕ(d).
Let us first prove that the set K is H-stable when (2.9) holds. Under this

assumption, there exists three sequences of real numbers (dn, zn, ẑn) such that

dn ∈ [γ, δ],

ẑnϕ(dn) + znϕ̂(dn) = 1,

(zn, ẑn) /∈ (−∞, 0)2,

ϕ(d) = infn{znd+ ẑnϕ
2(dn)}, ∀d ∈ [γ, δ],

ϕ̂(d) = supn{ẑnd+ znϕ̂
2(dn)}, ∀d ∈ [γ, δ].

(3.4)

Indeed, define
zn := ϕ′(dn), ẑn := ϕ̂′(dn).

Since ϕ̂(d)ϕ(d) = d,
ϕ̂′(dn)ϕ(dn) + ϕ̂(dn)ϕ′(dn) = 1,

hence {
ϕ̂′(dn)ϕ2(dn) + dnϕ

′(dn) = ϕ(dn),

ϕ′(dn)ϕ̂2(dn) + dnϕ̂
′(dn) = ϕ̂(dn).

This implies that {
znd+ ẑnϕ

2(dn) = ϕ(dn) + ϕ′(dn)(d− dn),

ẑnd+ znϕ̂
2(dn) = ϕ̂(dn) + ϕ̂′(dn)(d− dn).
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So, the functions wich appear in the infimum and in the supremum in the last two
lines of (3.4) are in fact the tangent line to ϕ(d) passing through the point (dn, ϕ(dn))
and the tangent line to ϕ̂(d) passing through the point (dn, ϕ̂(dn)). But, since the
function ϕ is assumed to be concave, while the function ϕ̂ is assumed to be convex,
we can choose a countable set of points dn ∈ [γ, δ] such that ϕ is the infimum of its
tangent lines through the points (dn, ϕ(dn)), while ϕ̂ is the supremum of its tangent
lines through the points (dn, ϕ(dn)). Finally, zn and ẑn cannot be both negative,
since ẑnϕ(dn) + znϕ̂(dn) = 1 while ϕ and ϕ̂ are positive.

In view of (3.4), of the definition of the function ϕ̂ and of the definitions of the
sets L≥(a, b) and L≤(a, b), the set K defined in (2.7) is equivalently defined as

K=
{

(λ1, λ2) ∈ [α, β]2 : γ ≤ λ1λ2 ≤ δ
}⋂

n

{
L≥(ẑn, znϕ̂2(dn)) ∩ L≤(zn, ẑnϕ2(dn))

}
.

(3.5)
According to item 5 of Lemma 3.2, the first set in (3.5) is H-stable. In view of

Lemma 3.4 and of the third line of (3.4), the H-stability of the remaining sets in
(3.5) will be ensured, provided that we show that

(i) if znẑn ≤ 0, then L≤(zn, ẑnϕ2(dn)) ⊂ L≥(ẑn, znϕ̂2(dn));

(ii) if zn ≥ 0 and ẑn ≥ 0, then L≥(ẑn, znϕ̂2(dn)) ⊂ L≤(zn, ẑnϕ2(dn)).

To this effect, we first consider the case where λ1λ2 = dn. In this case, assuming,
with no loss of generality, that λ1 ≤ λ2, we have

λ1 ≥ ϕ̂(dn) if and only if λ2 ≤ ϕ(dn),

but in view of the second line of (3.4),{
ϕ̂(dn) = ẑndn + znϕ̂

2(dn) = ẑnλ1λ2 + znϕ̂
2(dn),

ϕ(dn) = zndn + ẑnϕ
2(dn) = znλ1λ2 + ẑnϕ

2(dn),

so that

λ1 ≥ ẑnλ1λ2 + znϕ̂
2(dn) if and only if λ2 ≤ znλ1λ2 + ẑnϕ

2(dn).

In other words, when λ1λ2 = dn, the equality

L≥(ẑn, znϕ̂(dn)) = L≤(zn, ẑnϕ2(dn))

holds independently of the signs of zn and ẑn. Thus, assertions (i) and (ii) are proved
when λ1λ2 = dn.
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We then pass to the case where λ1λ2 = d 6= dn. In view of the second line of
(3.4), (

znd+ ẑnϕ
2(dn)

) (
ẑnd+ znϕ̂

2(dn)
)

= d+ znẑn(d− dn)2,

and therefore, when d 6= dn,(
znd+ ẑnϕ

2(dn)
) (
ẑnd+ znϕ̂

2(dn)
)
≤ d if and only if znẑn ≤ 0. (3.6)

We first consider the case (i) where znẑn ≤ 0, and we assume, with no loss of
generality, that 0 < λ1 ≤ λ2. If (λ1, λ2) ∈ L≤(zn, ẑnϕ2(dn)), then

λ2 ≤ znλ1λ2 + ẑnϕ
2(dn),

and, by virtue of (3.6),(
znλ1λ2 + ẑnϕ

2(dn)
) (
ẑnλ1λ2 + znϕ̂

2(dn)
)
≤ λ1λ2 ≤ λ1

(
znλ1λ2 + ẑnϕ

2(dn)
)
.

Dividing by (znλ1λ2 + ẑnϕ
2(dn)), which is positive since 0 < λ1 ≤ λ2 ≤ znλ1λ2 +

ẑnϕ
2(dn), we obtain

ẑnλ1λ2 + znϕ̂
2(dn) ≤ λ1,

or in other words, since λ2 ≥ λ1,

(λ1, λ2) ∈ L≥(ẑn, znϕ̂2(dn)).

Thus, assertion (i) is proved when λ1λ2 6= dn.
Assertion (ii) is proved in a similar manner when λ1λ2 6= dn.
We conclude that K is H-stable as a countable intersection of H-stable sets when

(2.9) holds.

Conversely let us prove that the function ϕ(d) is concave and that the function
d/ϕ(d) is convex if the set K is H-stable.

To this effect we consider two constant materials γ1f1 ⊗ f1 + γ2f2 ⊗ f2 and
δ1f1 ⊗ f1 + δ2f2 ⊗ f2, where (f1, f2) is an orthonormal basis of R2, and we set
c = γ1γ2 and d = δ1δ2. As recalled in Subsection 3.1, the rank-one layering in
direction f1 of those two materials with volume fraction θ (0 ≤ θ ≤ 1) of the first
material produces the material with effective conductivity µ1f1 ⊗ f1 + µ2f2 ⊗ f2,
where

1/µ1 := 1/ (θ/γ1 + (1− θ)/δ1) , µ2 := θγ2 + (1− θ)δ2.

We set m = µ1µ2. Note that when θ varies between 0 and 1, these formulas imply
that m varies between d and c, while µ1 is an affine function of m.

If the two materials belong to K, i.e., if (γ1, γ2) and (δ1, δ2) belong to K, and
if the set K is H-stable, the effective material defined above should belong to K,
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i.e., (µ1, µ2) should belong to K. Therefore, in the (d, λ) representation (see Figure
2.2), the line segment which joins the points (c, γ1) and (d, δ1) should lie between
the curves ϕ(m) and m/ϕ(m) on the interval c ≤ m ≤ d. Taking γ1 = ϕ(c) and
δ1 = ϕ(d), and varying c and d between γ and δ, this implies that the fonction ϕ(m)
is concave on the interval γ ≤ m ≤ δ. Similarly taking γ1 = c/ϕ(c) and δ1 = d/ϕ(d)
implies that the fonction m/ϕ(m) is convex on the interval γ ≤ m ≤ δ.

The proof of Theorem 2.7 is now complete.

3.4 Proof of Theorem 2.3

Theorem 2.3 is an immediate consequence of Lemma 3.1 and of Theorem 2.7. Indeed,
Lemma 3.1 asserts that the sets Lwo and Lbo are subsets of the effective set of
mixtures of the A-material with the B-material – in others words of the H-closure
of conductivites of the form (2.3) – that contain the original materials A and B, while
Theorem 2.7 allows one to easily show that the set Lwo defined through inequalities
(2.4) (resp. Lbo defined through inequalities (2.5)) is H-stable when A and B are
well ordered (resp. when A and B are badly ordered).
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