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1. The trouble with finite plasticity

Many troubles in the 80’s ....... what is plastic strain, which stress
rate is the correct one, which yield criterion, .... ad nauseum and
..... few solutions.

Field might be pronounced “defunct” in the 10’s, at least from a
mechanician’s standpoint: have plasticians retired? ....... Well
maybe a few left (like, at this seminar??? ).



2. Ignorance is bliss – A few simplistic principles

• Multiplicative decomposition of the deformation gradient F into
a plastic deformation P and an elastic deformation E in no
particular order for now.

• In the absence of any kind of plastic deformation, finite
elasto-plastic behavior should be purely elastic:

P = I ⇒ F = E + hyperelastic energy W : M3×3 → R̄
⇓

E has same geom. prop. as F / W(E ) = Ŵ(ETE ) (frame indif.)
• Advent of plasticity conditioned by threshold on Cauchy stress C :

C ∈ K convex (maybe compact)
⇓

Write dissipation as C · T
C · T ≥ 0

normality rule⇐= T ∈ NK(C ) (normal cone)
• Isochoric plastic deformation (metals, cryst. solids) ⇒ detP = 1
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3. The case for F = EP – crystal plasticity

• Crystalline rearrangements due to dislocations lead to new
intermediate configuration which is in turn stretched elastically.

ref. configuration

intermediate configuration

deformed configuration

• Intermediate configuration viewed as “‘new” reference conf.

• Respects plastic indifference – was ist das? – not sure:
W(E ) =W(FP−1) =W(FG (PG )−1), ∀G with detG = 1.
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4. The case for F = PE – polar decomposition

• Decompose P as
P = QP ′QTR or as P = R̄Q̄P ′′Q̄T

R,Q, R̄, Q̄ ∈ SO(3)
P ′,P ′′ diag. + > 0 entries

•With R ′ = QTR,Q ′ = R̄Q̄:
F = EP ⇒ F = EQP ′R ′ = EQ ′P ′′QT

F = PE ⇒ F = QP ′R ′E = Q ′P ′′Q̄TE
• Frame indifference: W(Q̄TE ) =W(R ′E ) =W(E )

⇓
F = QP ′E ′, P ′ diag. ,Q ∈ SO(3)

6≡
W(EQ) =W(EQ ′) =W(E ) only if W isotropic!

• Conclusion: Preference for decomposition F = QPE with

Q ∈ SO(3), P =

(
p1 > 0 0 0

0 p2 > 0 0
0 0 p3 > 0

)
, p1p2p3 = 1, detE > 0



4. The case for F = PE – polar decomposition

• Decompose P as
P = QP ′QTR or as P = R̄Q̄P ′′Q̄T

R,Q, R̄, Q̄ ∈ SO(3)
P ′,P ′′ diag. + > 0 entries

•With R ′ = QTR,Q ′ = R̄Q̄:
F = EP ⇒ F = EQP ′R ′ = EQ ′P ′′QT

F = PE ⇒ F = QP ′R ′E = Q ′P ′′Q̄TE

• Frame indifference: W(Q̄TE ) =W(R ′E ) =W(E )
⇓

F = QP ′E ′, P ′ diag. ,Q ∈ SO(3)
6≡

W(EQ) =W(EQ ′) =W(E ) only if W isotropic!
• Conclusion: Preference for decomposition F = QPE with

Q ∈ SO(3), P =

(
p1 > 0 0 0

0 p2 > 0 0
0 0 p3 > 0

)
, p1p2p3 = 1, detE > 0



4. The case for F = PE – polar decomposition

• Decompose P as
P = QP ′QTR or as P = R̄Q̄P ′′Q̄T

R,Q, R̄, Q̄ ∈ SO(3)
P ′,P ′′ diag. + > 0 entries

•With R ′ = QTR,Q ′ = R̄Q̄:
F = EP ⇒ F = EQP ′R ′ = EQ ′P ′′QT

F = PE ⇒ F = QP ′R ′E = Q ′P ′′Q̄TE
• Frame indifference: W(Q̄TE ) =W(R ′E ) =W(E )

⇓
F = QP ′E ′, P ′ diag. ,Q ∈ SO(3)

6≡
W(EQ) =W(EQ ′) =W(E ) only if W isotropic!

• Conclusion: Preference for decomposition F = QPE with

Q ∈ SO(3), P =

(
p1 > 0 0 0

0 p2 > 0 0
0 0 p3 > 0

)
, p1p2p3 = 1, detE > 0



4. The case for F = PE – polar decomposition

• Decompose P as
P = QP ′QTR or as P = R̄Q̄P ′′Q̄T

R,Q, R̄, Q̄ ∈ SO(3)
P ′,P ′′ diag. + > 0 entries

•With R ′ = QTR,Q ′ = R̄Q̄:
F = EP ⇒ F = EQP ′R ′ = EQ ′P ′′QT

F = PE ⇒ F = QP ′R ′E = Q ′P ′′Q̄TE
• Frame indifference: W(Q̄TE ) =W(R ′E ) =W(E )

⇓
F = QP ′E ′, P ′ diag. ,Q ∈ SO(3)

6≡
W(EQ) =W(EQ ′) =W(E ) only if W isotropic!

• Conclusion: Preference for decomposition F = QPE with

Q ∈ SO(3), P =

(
p1 > 0 0 0

0 p2 > 0 0
0 0 p3 > 0

)
, p1p2p3 = 1, detE > 0



5. A rational(?) model

• Free energy: W ′(Q,P,F ) :=W(P−1QTF )

• Use the thermodynamic machine:
-Compute the first Piola-Kirchhoff stress, then the Cauchy stress
via the Piola transform.

C =
1

detE
QP−1 DW(E )ET︸ ︷︷ ︸PQT not nec. symmetric!!

sym. because of frame indifference

But C must be sym.⇒ DW(E )ET must commute with P!

-Compute back stresses associated with P,Q:
B := −∂W/∂P, S := −∂W/∂Q

in terms of C .
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6. A rational(?) model – part 2

• Clausius-Duhem B · Ṗ + S · Q̇ ≥ 0 reduces to
detE QTCQ · (ṖP−1 − Q̇TQ) ≥ 0⇒ detE QTCQ · ṖP−1 ≥ 0

symmetric diagonal skew-symmetric

The rotations do not contribute to the dissipation!

• Note that detP = 1⇒ tr ṖP−1 = 0 + frame ind. ⇒
K ⊂ trace free mat. + inv. under SO(3)⇒

Diss. is also QTCdevQ · detE ṖP−1 ≥ 0
⇓ (normality)

detE ṖP−1 ∈ NK(Cdev ) = NK

(
1

detE
(DW(E )ET )dev

)
or, equivalently,

1

detE
(DW(E )ET )dev ∈ ∂H(detE ṖP−1) = ∂H(ṖP−1)

where H(L):= sup{L·C ′:C ′∈ K} supp. fct. of K.
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detE ṖP−1 ∈ NK(Cdev ) = NK

(
1

detE
(DW(E )ET )dev

)
or, equivalently,

1

detE
(DW(E )ET )dev ∈ ∂H(detE ṖP−1) = ∂H(ṖP−1)
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7. Summing up – An elasto-plastic evolution

mass density ρ0, density of loads f

The transformation field ϕ satisfies

∇ϕ =


QPE

P diagonal with> 0 eig.

detP = 1, detE > 0, Q ∈ SO(3)

ρ0
∂2ϕ

∂t2
− div [QP−1DW(E )] = f

detE ṖP−1 ∈ NK

(
1

detE
(DW(E )ET )dev

)
P = I or DW(E )ET = EDŴs(ETE )ET commutes with P.

+ approp. i.c.’s and b.c.’s



8. That system is “variationalizable” in a quasi-static setting

Formally,

Any (ϕ(t),E (t),P(t),Q(t)) with P(t) diag. with > 0 entries,
detP (t) = 1; Q(t) ∈ SO(3);

∇ϕ(t) = Q(t)P(t)E (t); e.g. ϕ(t) = 0 on ∂Ω; that satisfies

• (Global Minimality) (E (t),P(t)) min.∫
ΩW(E ′)dx−

∫
Ω f (t) ·ϕ′dx +

∫
Ω detE (t) H((logP ′ − logP(t)))dx ,

among all (ϕ′,E ′,P ′,Q ′) with ∇ϕ′ = Q ′P ′E ′, ϕ′ ≡ 0 on ∂Ω

P ′ diag. with > 0 elts., detP ′= 1,Q ′ ∈ SO(3)

• (Energy Conservation)
d
dt

{∫
ΩW(E (t)dx −

∫
Ω f (t) · ϕ(t)dx

}
+
∫

Ω detE (t) H(L̇(t))dx =

−
∫

Ω ḟ (t) · ϕ(t)dx ,
with L(t) := logP(t),

satisfies the original system.

• Note that the commutativity constraint has disappeared!
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9. Comparison with classical model F = EP

• In the classical model, it seems impossible to diagonalize the
plastic strain P except for isotropic materials

• In the classical model, it seems impossible to accommodate a
constraint on the Cauchy stress that does not depend on the
elastic strain gradient: CD ∈ ∂H(EP−1ET detE )

• In the classical model, it seems impossible to derive a formally
equivalent variational evolution without an ad-hoc modification of
the dissipation (Mielke 2003):

D(P,P ′) := inf

{∫ 1

0
H(P−1(s)Ṗ(s))ds :

P smooth on [0, 1];P(0) = P,P(1) = P ′
}

⇓

Dissipation gap
surely better than allowing a“mineshaft gap” says

as-of-today-President Trump , oops General Turgidson I mean
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10. Existence of a regularized variational evolution I

• As stated above, system is ugly! No convexity, logarithmic
growth of the dissipation,..... even functional framework is unclear.

• Trivial remedy: add some hardening + gradient plasticity: a term
in ∇P and a term in ∇Q in the energy; not so bad, right?

• Unfortunately, not enough: need to write stress admissibility for
Kirchhoff stress, not Cauchy stress:

DW(E )ET not
1

detE
DW(E )ET

⇓
Existence theorem à la Mielke – see next slide
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Existence theorem à la Mielke – see next slide



10. Existence of a regularized variational evolution I

• As stated above, system is ugly! No convexity, logarithmic
growth of the dissipation,..... even functional framework is unclear.

• Trivial remedy: add some hardening + gradient plasticity: a term
in ∇P and a term in ∇Q in the energy; not so bad, right?

• Unfortunately, not enough: need to write stress admissibility for
Kirchhoff stress, not Cauchy stress:

DW(E )ET not
1

detE
DW(E )ET

⇓
Existence theorem à la Mielke – see next slide



10. Existence of a regularized variational evolution I

• As stated above, system is ugly! No convexity, logarithmic
growth of the dissipation,..... even functional framework is unclear.

• Trivial remedy: add some hardening + gradient plasticity: a term
in ∇P and a term in ∇Q in the energy; not so bad, right?

• Unfortunately, not enough: need to write stress admissibility for
Kirchhoff stress, not Cauchy stress:

DW(E )ET not
1

detE
DW(E )ET

⇓
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11. Existence of a regularized variational evolution II
• Elastic energyW:

1. classical: polyconv., C1(M3×3
+ ),W ≡ ∞ on M3×3 \ M3×3

+ ,

W(Id) = 0,W(RF ) =W(F ), R ∈ SO(3),W(F ) ≥ c1dist
p(F ; SO(3)), p > 3;

2. less classical: |DW(F )FT | ≤ c2(W(F ) + 1), and ∃ω, mod. cont. s.t., for all N ∈ M3×3
+ ,

|DW(F )FT − DW(NF )(NF )T | ≤ ω(‖N − Id‖)(W(F ) + 1) (example: Ogden mat.)

• Hardening functionalWhard :

constrained model of kin. hardening: continuous,Whard (P) := W̃hard (P),

P ∈ V ⊂ R3
1 := (R∗+)3 ∩ {P : detP = 1} (compact with 13 as an interior point), +∞ else.

• Dissipation functional H: convex, positively one-hom. with r|F | ≤ H(F ) ≤ R|F |.
• Boundary conditions g on Γ ⊂ ∂Ω: smooth enough, spec.

g : [0,T ]× R3 → R3: g(t, ·) global diffeom. with g ∈ C2([0,T ]× R3; R3), ‖∇g‖L∞ ≤ C , ‖∇ġ‖L∞ ≤ C ,

‖∇g̈‖L∞ ≤ C , ‖(∇g)−1‖L∞ ≤ C .

• Deformations ϕ: can be decomposed as ϕ(t, x) =g(t, y(t, x)), with

y ∈ Y := {y ∈ W 1,p(Ω; R3) : ybΓ= id} (mult. decomp.).

• Energy functional : for any (y,Q, P) ∈ A := Y ×W 1,p(Ω; SO(3))×W 1,p(Ω; R3
1),{

E(t, y,Q, P) :=
∫

ΩW(P−1QT∇g(t, y)∇y) dx

F(t, y,Q, P) := E(t, y,Q,P)+
∫

ΩWhard (P)dx+
∫

Ω|∇P|pdx+
∫

Ω|∇Q|pdx

• Variational evolution: t ∈ [0,T ] 7→ (y(t),Q(t),P(t))∈A , L(t) := log P(t) is a variational evolution if
(Glob.Min.) F(t, y(t),Q(t),P(t))≤F(t, y′,Q′,P′)+

∫
ΩH(L′−L(t))dx , ∀(y′,Q′, P′) ∈ A , L′ := log P′;

(En. Cons.) F(t, y(t),Q(t), P(t)) + DissH(0, t; L) =F(0, y0,Q0, P0)+∫ t
0

∫
ΩDW(P−1(s)QT (s)∇g(s, y(s))∇y(s)) · P−1(s)QT (s)∇ġ(s, y(s))∇y(s)dxds,

where DissH(t1, t2; L) := sup{si}
{∑N

i=1

∫
ΩH(L(si )− L(si−1)) dx

}
.

Existence Theorem: Let (y0,Q0, P0) ∈ A be a stable initial condition, that is that it satisfies
F(0, y0,Q0, P0) ≤ F(0, y′,Q′, P′) +

∫
ΩH(L′ − L0)dx

for every (y′,Q′, P′) ∈ A with L0 := log P0. Then, there exists a variational quasi-static evolution
t 7→ (y(t),Q(t), P(t)) such that y(0) = y0, Q(0) = Q0, P(0) = P0 and L(0) = L0.



12. Rigid Plasticity as a first indictement

• Assume

W(E ) =

{
0, E ∈ SO(N)

∞, else.
⇒W(E ) = 0 iff F = QPR ⇒

the diag. entries of P ≡ sing. values λi of F

• Define Ŵ(F ) := min
{∫

ΩW(E ) +H(logP); F = QPE for ....
}

⇓ Von Mises plasticity

Ŵ(F ) := h(detF ) + c
√
| log λ1|2 + | log λ2|2 + | log λ3|2,

h(g) := 0, g = 1 and ∞, else.

• Lower semi-cont. envelope of ϕ→
∫

Ω Ŵ(∇ϕ)dx (in smooth
enough space like W 1,p)?

If you believe it is local, that is of the form ϕ→
∫

Ω QŴ(∇ϕ)dx , then

QŴ is quasi-convex, then rank-one convex and we find that
QŴ ≡ 0 if detF = 1!

• Not good and not specific to our model. Log. growth + mult.
decomp. are the culprits!!
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13. 1d as a second indictement

The deformation ϕ is such that ϕ′ = ep = pe.

• The free energy W is taken to be such that

W(1) = 0,

{
W ≥ 0 strictly convex on its domain

W(e) = 1
2A(e − 1)2, e ≥ 1,A > 0.

• The boundary conditions are a stretch:ϕ(0) = 0, ϕ(L) = L + td .

• There is a unique spatially homogeneous solution to the
variational formulation: ϕhom(t), phom(t).

• Define the energy coming out of the variational formulation:

F(t, ϕ̂, p̂) :=

∫
(0,L)
W(ê)dx +

∫
(0,L)

c |log p̂ − log p(t)| dx , ê :=
ϕ̂′

p̂
.

• The spatially homogeneous solution is unstable, that is that there
exists a smooth admissible variation (w , µ) of (ϕhom(t), phom(t))
such that

D2F(ϕhom(t), phom(t))[(w , µ), (w , µ)] < 0.
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14. Conclusion

Is it that finite
plasticity with no hardening

makes no sense?...
or...

Is it that the multiplicative
decomposition makes

no sense?...
or....

Am I missing something?1

1
....... most likely so


