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Abstract

In the context of shape optimization, we seek minimizers of the sum of the elastic compli-
ance and of the weight of a solid structure under specified loading. This problem is known
not to be well-posed, and a relaxed formulation is introduced. Its effect is to allow for mi-
croperforated composites as admissible designs. In a two-dimensional setting the relaxed
formulation was obtained in [6] with the help of the theory of homogenization and optimal
bounds for composite materials. We generalize the result to the three dimensional case.
Our contribution is twofold; first, we prove a relaxation theorem, valid in any dimensions;
secondly, we introduce a new numerical algorithm for computing optimal designs, comple-
mented with a penalization technique which permits to remove composite designs in the
final shape. Since it places no assumption on the number of holes cut within the domain,
it can be seen as a topology optimization algorithm. Numerical results are presented for
various two and three dimensional problems.
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1 Introduction

Shape optimization is a major issue in structural design. One of the most challenging
aspects of shape optimization is what structural engineers refer to as the layout, or topol-
ogy, optimization. Classical methods of shape optimization, based on boundary motion,
are ill equiped to capture the possible topological complexity of the shape because the
required smoothness assumptions on the boundary of the material domain do not permit
hole punching, although it is widely acknowledged that creating holes (i.e., changing the
topology) may drastically improve the performance of a candidate optimal shape.

In theory the remedy is straightforward: allow for holes of any shape and any size
within the design region. The recipe is deceptive because the issue at stake is truly of a
mathematical nature. The collection of admissible holes should be such that meaningful
optimality criteria can be proposed. If, as will be the case in the remainder of the paper,
the announced goal is to minimize the compliance of an elastic structure under a weight
constraint, the optimization process is really a bang-bang problem (material or void) in an
infinite dimensional space, say that of characteristic functions of the shape: a well known
difficulty since the work of Pontryaguin. The resulting formulation is generically ill-posed.
The reader is refered to the typical counter-examples presented in [31] for model problems
of control through the coefficients of an objective functional depending on the solution of
a linear partial differential equation.

It is well known since the pioneering work of Murat and Tartar [33] that a larger
class of admissible designs must be introduced. The adequate class to be considered is
precisely the concern of the theory of homogenization. Here again the seminal idea is
straightforward: allow for fine mixtures of void and material on a scale which is much
smaller than the mesh used for the actual computation. In physical terms admissible
designs should now include arbitrary microperforations of the elastic material within the
design domain. Of course there are many microstructures that correspond to the same
volume fraction of void in a porous medium and the generalized designs are characterized
not only by the volume fraction of void but also by the resulting effective tensor (or
Hooke’s law) which depends in turn on the specific microgeometry. Unfortunately, the
set of effective tensors resulting from the mixture in fixed volume fraction of two elastic
materials is unknown, although its conductivity analogue is known [33]. This obstacle is
alleviated in the particular case where the objective functional is the elastic compliance
because its minimum can be computed among a well-known subset of the full set of effective
tensors, namely that of sequential laminates.

This process of enlarging the space of admissible designs in order to get a well posed
problem is called relaxation. The intimate connection between relaxation and homoge-
nization is demonstrated in [33] for a scalar setting. In a context closer to that of shape
optimization, it is explored at length in [26]. Bona fide shape optimization imposes an
additional hurdle: one of the phases in the mixing process is actually degenerate. Ho-
mogenization theory is crippled by the presence of material voids and, although formal
computations suggest as a placebo the filling of holes with a very compliant material, a
full mathematical justification is still pending.

The present paper should be approached within such a background. On the one hand



we carefully map the passage from the original shape optimization problem to its assumed
relaxed formulation. This permits to prove satisfactory, albeit partial, relaxation results in
two, as well as three, dimensions. On the other hand we squeeze the relaxed formulation
for every drop of available information and propose a new computational algorithm for
two and three dimensional shape optimization that takes full advantage of the thorough
knowledge of the optimal microstructures. In some sense, this paper can be seen as a
continuation and a generalization of [6] which was a purely two dimensional work.

The importance of the homogenization method for shape optimization goes far be-
yond proving existence theorems for relaxed optimal designs and establishing necessary
conditions of optimality. Since the work of Bendsoe and Kikuchi [11], a new class of
numerical algorithms based on the homogenization method has appeared. They are fre-
quently viewed as ”topology optimization” algorithms since they are able to capture very
fine patterns of the optimal shape on a fixed numerical grid. Our algorithm belongs to this
class and is the first one to use optimal microstructures in three dimensional computations.
Other numerical applications of the homogenization method for shape optimization may
be found in [2], [4], [9], [10], [13], [24], [25], [36], and [40].

In Section 2 we carefully state the original shape optimization problem as well as
the relaxed problem investigated thereafter. Section 3 is a step by step exploration of the
relaxation process; we demonstrate that the hole filling process results in a formulation
which is indeed a likely candidate although a complete relaxation result is wanting (see
Theorem 3.1 and Proposition 3.2). Section 4 details the intimate properties of the relaxed
energy and in particular the type of optimal microstructure (multiple layers) and the
values of the associated parameters (the directions and volume fractions in each layering
process). The ensuing algorithm is presented in Section 5: it is an alternate direction
algorithm which successively computes the stress field through the solving of a problem of
linear elasticity and the optimal microstructure for that stress field. Section 6 is devoted
to some ad hoc penalization techniques that will extract sound classical designs out of
unfeasible generalized designs. Section 7 is a discussion of the merits of the fictitious
material approach broadly used in shape optimization. It is shown on a typical example
to yield a worse design than the homogenization method. Section 8 presents our numerical
results: 2-D and 3-D computations are displayed.

As a final note, the reader may find the paper somewhat unsettling to the extent that
it addresses issues ranging from mathematical proofs of existence of relaxed solutions all
the way to numerical treatments of various parameters in our 2-D and 3-D finite element
code. Our decision to tackle such a broad spectrum of issues is anchored in our belief that
only a detailed knowledge of shape optimization will permit further progress in theory as
well as in numerical practice.

2 The original optimal design problem and its relaxed for-
mulation.

Consider a bounded domain € in IR" subject to “smooth enough” surface loadings f
(e.g. f € HY2(0Q)N) on its boundary 0. We assume global equilibrium of this surface



loadings, i.e.,
fds = 0.
80

Part of the domain is occupied by an isotropic linearly elastic material with elasticity
24
A= (K’_W)I2®I2+2IUI47 0 <k, p < +o0, (1)

while the remaining part of Q is void. Let x denote the characteristic function of the
part 2, of € occupied by the elastic material. Whenever €2, is a smooth enough open
subdomain of €2 such that 02, contains the part of 92 where f is non zero, the elasticity
problem in €2, is well-posed, i.e., the following set of equations

o= Ae(u) e(u) =1/2(Vu+ Viu),

divo =0 1in§},, (2)
o-n=f ondQ,NoAQ,

o-n=0 ondQ,\ o

has a unique solution u € H'(Q,)" (up to a rigid displacement field). Here, u is
the displacgment vector and o is the associated Cauchy stress field uniquely defined in
LQ(QM IRiV )-

As such o can be extended to an element of L*(§; lRiVZ) which further realizes the
minimum of the complementary energy over all statically admissible stress fields, i.e.,

c(x):= [ Ao -odx = min / At rdx (3)
Q TES(X) Ja

where the set () is defined by

X(x) = {7‘ € LQ(Q;IRin) |divT=0inQ; 7-n=fon 0Q; 7(z) =0 a.e. where x(z) = 0} .
(4)

The quantity c(x), defined by (3), is called the compliance of the body and a straightfor-
ward integration by parts demonstrates that

C(X) = an‘de’

where u is the solution of (2).

When x(z) is the characteristic function of an arbitrary measurable subset of € (not
necessarily open) the existence of o is no longer guaranteed. A generalized compliance
may however be defined as

¢(x) := inf A1 rdx (5)

Te€X(x) JQ

with ¥(x) defined by (4) (note that the infimum is not necessarily attained).

The goal of optimal design is to devise the least compliant structure compatible with
the loads for a given weight of the structure. Thus, the range of compliances ¢(x) for all
characteristic functions x such that

/X(:Jc)dac:@, 0<06 <9,
Q



is investigated and the optimal design problem reads as

Fimint {cx) | x€ L*@ (0,1} [ xlahds =0}, (6)

The optimal design problem defined in (6) is difficult to handle since it is constrained by

/Qx(x)dx =0. (7)

Such a constraint is routinely handled in elementary calculus of variations through the
introduction of a positive Lagrange multiplier. Thus, (6) is replaced by

10:=_ it {0+ [ xads), 8)
in the hope that there exists a positive value of £ for which the volume constraint (7) is
met. That it is so is not obvious in the case at hand, and as such it should be justified.
We are unfortunately helpless in the matter as will be further pointed out at the end of
Section 3 below. Thus, we content ourselves with the above unconstrained version of the
original optimization problem.

Remark 2.1 For the sake of simplicity we consider only the case where surface loads are
applied. A straightforward modification of the model would however permit the considera-
tion of volume forces or the clamping of part of the boundary 0 (i.e., the enforcement of
a Dirichlet boundary condition u = 0). The reader is referred to the numerical examples
presented in Section 8 which include different types of boundary conditions.

Remark 2.2 The above optimization problem is usually referred to as a “single load”
problem. This means that the elastic structure is optimized for a single configuration of
loading forces and may well be totally inadequate for other loads. In practice it is an un-
desirable feature and it is quite often more realistic to investigate the so-called “multiple
loads” problem which amounts to an optimization of the structure for several configu-
rations. Specifically, various surface loadings fi,---,f, are given and we consider the
minimization problem

L0)= _ iof {Z ci(x) + 5/9 X(I)dw} (9)

=

where ¢;(x) is the generalized compliance defined by (5) for the boundary condition f;.
Most of the obtained theoretical results hold true for the multiple loads problem. For the
sake of brevity, the article is structured around the single load case; the multiple loads case
s only mentioned when it departs from its single load analog. Remark, however, that the
numerical algorithm for the multiple loads problem is more complex than that of the single
load case since an explicit formulation of the relaxed problem (in other words an explicit
formula for the optimal microstructure) is not available.

It is well-known since the seminal counter-examples of Murat [31] that problems of the
type (6) or (8) are generically ill-posed to the extent that minimizers need not exist among



characteristic functions. The problem must be relaxed, and the optimum is achieved by
a generalized design which involves infinitely fine micro-perforations of the material. A
simple and concise description of the relaxation process in the present setting may be
found in [6]; it is briefly recalled below.

In a first step, a convenient rewriting of I(¢) is achieved as follows. Choose an
arbitrary characteristic function x in L>(£;{0,1}). If 7 is an admissible test stress field
in the definition (5) of the compliance c(x), the set {x € Q| 7(z) = 0} is measurable and
it contains the set {z € Q| x(z) = 0}. But clearly, if x is the characteristic function of
the complement in Q of {z € Q| 7(z) = 0}, then

/ (A7'r 74+ 4x) dz < / (A7 77+ 0x) da,
Q Q

so that I(¢) is equivalently defined by
uazqﬁ{4@+e/xumm}, (10)
X7 Q

where x € L*(Q;{0,1}) and 7 € L*(; lRiVZ) are now constrained by
divt =0 in
T-n=f on 0f2 (11)
7(z) =0 if and only if x(z) =0 a.e. in Q.

After minimization in y,

I(¢) = inf d 12
0=t [ ri (12)
where
%(Q) := {TELQ(Q;lRiV) | divT=01in T-n:fonaﬁ}, (13)
and

0 ifr=0

ﬂh%:{A1FT+€ﬁT#& (14)

The function f, defined in (14) combines two pathologies: lack of convexity and lack of
continuity at the origin. The lack of convexity (or even quasi-convexity) is by now a usual
feature of vector-valued minimization problems and it calls for a relaxation of f,. The lack
of continuity of f, at 7 = 0 is the mathematical manifestation of the presence of holes in
Q. It is physically reasonable and, as will be seen later, mathematically sound to fill the
holes with a very compliant material . In other words, for small 7, f, is approximated by

f(r) i=min{A'r -7+l T T}, (15)

Note that, as n (the stiffness of the ersatz material) tends to zero, the sequence of functions
f/ monotonically converges to f,.

In a second step, the relaxation process is performed at fixed 7. Thus, (12) is replaced
by
I(¢,n) = inf fl(r)dz. (16)

TEX(Q) JO



The relaxation of (16) is well understood. The reader is referred to [6] for a detailed
exposition of the method (see also [5] for many technical details). The result is

1) = '(6n) = min [ F(r (17)
where
F'(r):= 0I<naln {F"(r,0) + 46}, (18)

and F"(7,0) is defined as the so-called optimal lower bound on the effective complementary
energy. More precisely, we introduce the subset G of all possible anisotropic Hooke’s laws
of composite materials obtained by mixing A and 7 in proportions # and 1— 6 (see Section
4 for details). Then

F(1,0) := min A* '7.7. (19)

Axeqy

Finally in a third step, the weak material n is allowed to tend to zero. As n decreases
to zero, we define the monotone limit

F(r,0) := 7171{‘% F(r,6). (20)

Similarly, we define the monotone limit

Fy(r) :=lim F)'(1) = mln {F(1,0)+ 10} . (21)

70 0<0<

The function F, turns out to be continuous in 7, but not convex. We shall prove in Section
3 that the relaxation of the optimization problem (8) is precisely

1(6) = I*(¢) == min / Fy(r (22)

TEL(Q

In [6] a proof of (22) is proposed in a 2-D setting at the expense of a non-trivial homoge-
nization result pertaining to composite material obtained by rank-2 layering of the original
material with void. Our purpose is to give a proof of the relaxation result which is valid
for any spatial dimension as well as for any number of loading configurations.

Remark 2.3 We have not said much so far about the function F(7,0) defined as a mono-
tone limit by (20). Loosely speaking, it is the optimal lower bound on the complementary
energy for a perforated composite material obtained by mizing the material A with holes
in proportions 0 and 1 — 0. Its properties will be examined in greater details in Section J
below (see Corollary 4.4). Let us simply point out at this time the properties of F that will
be of use in Section 3. The function F(1,0) is given by the following formula

-0
F(r,0) = A~ TT+T “(7), (23)
where g*(7) is a continuous and convexr function of T only, homogeneous of degree 2,
and strictly positive for any T # 0. Therefore, F is continuous in (7,0) with values in



IRY U {+00} and strictly convex separately in T and in 0. For any T € lRi\ﬁ, there exists
a unique minimizer 0 in (21) given by

0 = min {1, g*éT) } . (24)

Consequently, for any minimizer 1, of the relazed formulation (22), we associate through
(24) a unique density function 0, that we call a relazed, or generalized, optimal shape.

Remark 2.4 In the case of p different loadings, rewriting the optimization problem (9)
in terms of stresses yields

L=t 7)o, (25)

where
¥P(Q) = {{Ti}lgigp € LQ(Q;lRivz)p | divr;,=01inQ; 7,-n=Ff on BQ} ,

and
’Lf all T; = 0,

0
P L) .—
JEmd) : { P VAT T T+ 0 if at least one T; £ 0. (26)

Then, as in the case of a single load, we introduce a weak material n and approzimate f;
defined in (26) by

P P
7" ({7:}) := min {Z A7l 4 0, Zn_lﬁ . Ti} .

i=1 i=1

Once again, as n tends to zero, the sequence of functions f;"" monotonically converges to
ft. The relazation of the functional I,(¢,n), with integrand f{", is also classical [5], [6],
and the result is similar to the single load case, namely

L) = Len) = min [ 7 ({r)da
where
E)"({n}) = OI<1101£11 {FP" ({r;},0) + 0}, (27)

and FP" is defined as the so-called optimal lower bound on the sum of p effective comple-
mentary energies
e 0) := At 28
({7:},0) == min, 2} T T (28)
Then, as before, we define F? as the monotone limit of FP" when n tends to zero. Intro-
ducing

Pf ) | P () P
Fy ({miy) »= lm B ({7:}) = min {F7 ({7:},0) + €6}, (29)
the relazation of the original problem (25) is given by
I,(¢) = I;(¢) := renzli?sz)/ F} ({m}) dz. (30)



The proof is very similar to that of the single load case (see Remark 3.7), because the
functions F? ({7;},0) and F(7,0) enjoy similar properties. In particular, the analogue of
(23) holds, i.e., there exists a continuous, convex, positive, and homogeneous of degree 2
function g3 ({7:}) such that (see Theorem 4.14)

P * — 1 - 9 *
Fp ({Tl},o) == ZA lTi . Ti + Tgp ({7—1}) .
i=1
It implies that F? is strictly convez in 0 and that there exists a unique minimizer 6 in (29)
given by
9:min{1, w} (31)

Consequently, a unique optimal density is associated through (31) to any minimizer of the
relazed formulation (30).
We conclude this section with a brieerecall of the notion of quasi-convexification of
a real-valued functional W defined on IRY . Let W be continuous and satisfy
0<W(r) <L+, 7elr),
and define, for any bounded open domain © of IR",
() = {7 € L2 RY") | div T =0inQ}.

The lower semi-continuous envelope in Xq(€2) of
I(1) := / W (r)dx
Q

for the sequential weak topology of L?(€; IRiV 2), i.e., the functional

RI(7) := inf liminf I(7,)

T ES0(Q),mn—r Weakly in L2(o;mrN?)

is given by

RI(7) = /Q QW (7)de. (32)

The integrand QW is the quasi-convexification of W defined for every 7 in IR{:’2 as

QW (r) = inf /OW(s)d:L“,

SGZO(C),fC s(z)dz=1
where C is the unit cube of IR".

The integrand QW is a locally Lipschitz function as easily seen upon noting that QW
is rank-(NN — 1) convex and satisfies the same growth assumption as W (see e.g. [28]). In
the present setting (18) may be restated as

F(r) = Qf/(7), (33)
with f;" defined by (15). In other words F,' is the quasi-convexification of f,.

10



Remark 2.5 Until very recently, a proof of (32) was hard to locate in the literature because
attention had been focussed primarily on functionals that depend on the gradient of a
vector-valued field. In the latter setting the reader is referred to [15], Theorems 1.1 and 2.1
in Section 5, and to [1], Statement 3.7. A general study of quasiconvezity for functionals of
vector fields that satisfy some first order differential constraints in the spirit of compensated
compactness may now be found in [17] and it fills the existing gap.

3 The relaxation process revisited.

This section revisits the derivation of the relaxed formulation for the unconstrained prob-
lem of least compliance and weight optimization introduced in Section 2. As already said,
the relaxed formulation was already derived in [6], but a rigorous proof was only proposed
in the two-dimensional setting. We saw in Section 2 that the shape optimization problem
under consideration admits two equivalent formulations: that as a minimization over char-
acteristic functions, and that as a problem of nonlinear elasticity in terms of stresses. We
first give a complete relaxation theorem for the stress formulation, then deduce a partial
relaxation result for the original formulation in terms of characteristic functions.

Theorem 3.1 The stress formulation (12), (13) of the optimal shape problem admits (22)
as o relaxed formulation. In other words, for any fized value of the Lagrange multiplier
¢ € [0; +00),

1. there ezists at least one solution in X(2) of the relazed minimization problem (22)
and

I(¢) ;== inf fe(t)dz = I"(¢) := min /QF,_;(T)d:L“, (34)

rex(Q) Jo TEXD(Q)

2. up to a subsequence, any minimizing sequence of (12) converges weakly in L*(€; IRiv2)
to a minimizer of (22),

3. for any minimizer T of (22) there exists a minimizing sequence of (12) which con-
verges to T weakly in L*(; IRY").

The above result does not say anything about the link between the minimizing se-
quences of characteristic functions and the optimal densities in the relaxed formulation.
Let us firstly recall that the integrand in the relaxed formulation is given by

Fy(1) =F(r,0,) + ¢0,, (35)

where, by virtue of Remark 2.3, the volume fraction @, is uniquely and unambiguously
determined, once 7 is known. Such a density function defines a so-called relaxed, or
generalized, shape. It remains to understand in which sense the minimizing sequences of
characteristic functions are related to this (possibly non-unique) optimal density. This is
the object of the following

11



Proposition 3.2 For any fized Lagrange multiplier £ € [0; +00), there exists at least one
relaxed optimal shape, i.e., a density 0,. Furthermore, for any minimizing sequence of
characteristic functions x, € L>®(;{0,1}), there ezists a subsequence and a limit density
0, such that this subsequence converges to 0, weak-. in L*>(;{0,1}) and 6, is a relazed
optimal shape, i.e., it is associated through (35) to a minimizer of the relazed formulation

(22).

Remark 3.3 Proposition 3.2 is a weak version of the desired result of relazation. In truth
we aimed at proving that any minimizer 1, of (22) and its associated density 0, are attained
as weak limits of a sequence (T, xn) € L(2) x L>(Q; {0, 1}) satisfying (11), i.e., such that

To(z) =0 iff xn(2) =0 a.e. in Q,
Xn — 0; weak-, in L>(£;[0,1]),
Tn — T¢ weakly in L*(€; IRF), (36)

/ A=, - T,dr — / F(7y,0,)dz,
Q Q

and conversely that any minimizing sequence (T, x») of the original problem converges, up
to a subsequence, to a limit (1,,60,) which minimizes the relaxed problem. Unfortunately,
we are unable to keep track of the fields T, which are such that (T,,x,) “minimizes” (10).
In particular we do not know how to relate the weak limit of T, to 7.

Remark 3.4 Since by Theorem 3.1 we have proved the existence of at least one minimizer
T for the relaxed formulation I*(£), and consequently of one associated optimal density 0,
the next obvious question concerns the uniqueness of such minimizers. Remark first that
uniqueness in T implies uniqueness in 0, but the converse is a priori false (there may well be
different minimum stress fields T that yield the same optimal density 0). It turns out that
there is, in general, no uniqueness of either the minimizer T or the optimal density 0. In
Proposition 4.13 we shall construct a specific example for which there is an infinite number
of minimizers T and optimal densities 0. Furthermore, these optimal densities are actually
“classical” shapes, namely they take only the values 0 or 1 (i.e., they are characteristic
functions). Let us briefly describe this example: take any smooth domain Q and impose
a constant hydrostatic load on its boundary. In other words, select a boundary condition
o.n = og.n on 082, where oy is hydrostatic, i.e., oy = pols, with py a constant scalar (the
pressure) and I, the identity matriz. In this case, it is well known that the “concentric
spheres construction” of Hashin achieves optimality in the original optimization problem
I(¢), and thus in its relaxzed formulation I*(€) (see (34)). There exist an infinite number
of such constructions, depending on the chosen Vitali covering of Q0 by spheres. Further
details are given in Proposition 4.13.

This example is also interesting since it shows that “classical” optimal shapes may
exists for the original problem I(£). However, even in this “lucky” case, the relazed for-
mulation I*(¢) is not useless from a numerical standpoint. Indeed, it is a desperate task
to try to compute numerically an optimal design built from an assemblage of concentric
spheres which usually features an infinite number of holes (or connected components of the
boundary). Furthermore, the mesh size would act as a threshold for the size of the smallest
spheres, thus preventing optimality in a discrete computation.

12



Remark 3.5 Coming back to the constrained formulation (5) of the optimal shape design
problem, a complete relaxation process would amount to a rigorous proof of the existence,
for each 0 < © < ||, of a multiplier £ for which the relazed problem

I"(£) = min /QF[(T)d(II

TED(Q)

admits a solution T, € £(Q) such that the total volume fraction of material coincides with

0, ie.
Q

We are unable to prove the existence of such a value of £ ; indeed, we are in want of a
proof that the function

o) = /Q 0,

is continuous in L. In fact, O(L) may well be a multi-valued function since the optimal
density 0, is not necessarily unique. We will merely establish in Lemma 3.6 below that it
is a decreasing function of £ and that it goes to zero as £ goes to infinity, provided that
the surface loadings are “smooth enough”. The continuity of ©(¢) is at present an open
question.

Proof of Theorem 3.1: It is a straightforward consequence of the fact that F, defined
in (21) is the quasi-convexification of f, defined in (14) in the sense of (32). We prove this
statement.

Since f; monotonically increases to f; as n tends to zero, we have
2
F(1) = Qf{(7) < Qfu(r), 7€ IR
But F,” monotonically increases to F, as n tends to zero. Thus
N2
F(r) < Qfe(r), 7elR; .

The integrand @ f, is quasi-convex and it has at most quadratic growth. Thus it is easily
seen in the spirit of Part 3 of the proof of Theorem 1.1 in Section 4.1 of [15] that Qf, is
rank-(N — 1) convex, hence continuous. Define

g (1) := min {f/(7), Qfe(7)} .

It is a monotone sequence of continuous functions that converges, as n tends to zero, to a

continuous function, namely @ f,, and Dini’s theorem implies the uniform convergence of
2

g/ to Qf, over any compact subset of IRiV . Further

Q¢ (1) < Qf{ (1) = F/'(7),

because g/ < f,/. Thus

7171{% Qg/ (1) < Fy(1) < Qfe(T).

We now prove that
QA7) < lim Qa? (1), (37)

13



which, in view of the previous inequaélity, establishes that Fj is the quasi-convexification
of fy, i.e., F; = Qf,. For any 7 in IRiV and any positive fourth order tensor 7, there exists
a test function s, in Xo(C) with [, s,(z)dz = 7 such that

Qo}(r) = [ gl(s,)da~In

> / Qf(sy)ds — || — / 197 — Qfel(s,)de

But g/ (1) = Qf,(7) as soon as |r]| is large enough (say |7| > M where M is independent
of ). Thus, for any positive e,

[ 1a = Qriltsy)e = | 07— QUil(s,)do < e
¢ Cn{lsy(z)|<M}

whenever 7 is small enough, because of the uniform character of the convergence of g; to

Qfe over the compact set {s € lRin|s| < M}. Thus, for any positive € and for  small
enough, we have

Qql(7) > / Qfe(sy)dz — || — € > Qfe(r) — In] — e,

by virtue of the quasi-convex character of @ f,. This proves (37). To complete the proof
of Theorem 3.1 it remains to check that F, is coercive, and is sequentially weakly lower
semi-continuous over (). This is obvious since

F(r)>A"'r-7, 1€ lRi\ﬁ,

and [, F/'dz is sequentially weakly lower semi-continuous, a property which carries over
as 7 tends to zero. Thus the minimization problem

min / Fy(r)dx
Q

TEX(Q)

admits a solution 7, in ¥(12) and (34) is indeed a relaxed formulation of (12).

Proof of Proposition 3.2: Let us consider a minimizing sequence x,, € L>(£2;{0,1})
of the original problem I(¢) defined by (5) and (8) which converges weak-, to some limit
0, in L>°(;]0,1]). For any admissible test function 7 € ¥(x,) , we have

/ A™'rordz = / (xnA™"+ (1 = xn)n™") 7o7dz > min / (xnA™" + (1 = xn)n™") o-0dz.
Q Q o€X(Q) Jo

(38)
As soon as 7 is positive, the minimum in the right hand side of (38) is attained by a unique
7). Thus, minimizing in 7, and recalling that x,, is a minimizing sequence of I(¢), yield

I(¢) > lim sup,, {/ (xnA '+ (1= xu)n ') 77 - 7ldx + E/ Xndac} ) (39)
0 Q

According to the theory of H-convergence (see e.g. [32], [37]), a subsequence of A} :=
XnA + (1 — xn)n H-converges to a tensor Ay as n goes to infinity. Thus, the correspond-

ing 77 weakly converges in L2(Q;1Rivz) to an element 7" € L2(Q;1Riv2), and, for that
subsequence,

/Q (enA™ + (1= xo)7™") 77 - 7 — /Q (AD)~'77 - rda (40)
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Consequently (39) and (40) imply that
I(0) > / (AD)Lr7 - de + 0 / Oude. (41)
Q Q

Since I(¢) is finite (F, has quadratic growth at infinity), the sequence 7" is bounded in
2
L (9 lRiV ) independently of 7. A subsequence, still indexed by 7, is such that, as n goes
2
to zero, 7" converges weakly to some 7, in L?(Q; IR"Y"). Furthermore, since

1A} = AR llz=@) < In—1'l,
the same holds true for the H-limits as n tends to infinity, i.e.,

1Az — Ar

Le(Q) < |77 - 77,|-

Hence A; converges uniformly to A* as n goes to zero. The convex character of the

mappin
° (A7) = Alr- 7

yields
lim inf, / (Ap) P de > /(A*)flﬂz - Tyde,
Q Q

for which it is deduced, upon recalling (41), that
1) > / (A) "7, - 7yd + £ / Ouda. (42)
Q Q

Introduce the subset G, of L™ (Q; ES(IRiVZ)) defined as
Gj := {H-limits of A" = x, A+ (1 —xn)n | xn — 6}.
According to [16], for all 0 < 0 < 1, there exists a fixed subset G of Es(lRff) such that
Gy = {A(z) measurable | A(z) € Gy, a.e. inQ}.

Consequently A*(z) € G, a.e. in 2, where Gy is the algebraic limit of G as n goes to
zero.

Recall that F"(7, ) is defined as (see (19))

F"(1,0) := min B~'7 - .

BeGy
Therefore its monotone limit F'(1,6), as n tends to zero, is given by

F(r,0) = inf B'7-1. (43)

BeG§

Since A*(z) € Gy, a.e. in Q, we deduce from (42) and (43) that

1) Z/F(n,ez)dwwLE/ Oudic
Q
> forglelgl (F'(7¢,0) + €0) dz

> Z, Fy(r))dz.
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By Theorem 3.1 7, is a minimizer of I*(¢), and the above inequalities become equalities.
Furthermore, by virtue of the strict convexity in 0 of F(,0), 6, is the unique density asso-
ciated to 7, through minimization in @, a.e. in 2. This concludes the proof of Proposition
3.2.

We next prove the result announced in Remark 3.5.

Lemma 3.6 Define the multi-valued function

o) I:/ngdl',

where 0, is the optimal density associated to any (possibly non-unique) minimizer 7, of
the relazed problem I*(£). It is a decreasing function of £. Furthermore, ©(f) goes to zero
as ¥ goes to infinity, provided that the surface load f is such that there exists at least one
admissible test field o € () which is uniformly bounded in .

Proof: Assume that ¢ > ¢ > 0, and take any minimizer 7, (resp. 7,) of I*(£) (resp.
I*(¢')) and its associated optimal density €, (resp. 6,). We start from

() :/F(n,,ol,)dmw'@(e') < / F(7,00)da + £ O(0),
Q Q
which is equivalent to
/F(Tf,,oe,)d“e@(e') < / F(ry,00)dz + 00(0) + (£ — ) (B(£) —O(8)) . (44)
Q Q

Since the sum of the two first terms in the right hand side of (44) is precisely I*(¢), the

minimum value of
/ F(r,0)dx —i—E/ Odz,
Q Q

the last term of (44) must be positive. This yields
O() < O(r).

Now, assume that the surface load f is such that there exists at least one admissible test
field oy € () which is uniformly bounded in Q. Then, the density 6, associated through
formula (24), satisfies

by < <
0_\/2,

for £ large enough. Consequently,
Fy(0o) < C(1 4+ V) ae. in Q.

Thus any minimizing pair (7, 6,) satisfies
() = / F(r0,0,)dz + €0(£) < C(1 + V),
Q

which proves that ©(f) goes to zero when / goes to infinity at least as fast as £71/2,
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Remark 3.7 The relaxzation results, Theorem 3.1 and Proposition 3.2, still hold true for
a problem with multiple loads, as introduced in Remarks 2.2 and 2.4. Indeed, it is not
difficult to check the main ingredient of the proof of Theorem 3.1, namely that the inte-
grand F}({r;}) of the relazed formulation (30) is the quasi-convezification of the integrand
fr{m:}) of the original formulation (25). Similarly, the proof of Proposition 3.2 goes
through in the multiple loads case.

Remark 3.8 The proofs of Theorem 3.1 and Proposition 3.2 rest on the choice of the
compliance (or sum of compliances in the multiple loads case) as the objective function
because we use various properties of the relazed functional (such as the strict convexity of
F(7,0) with respect to 0) specific to the case under investigation. When other objective
functionals, such as the mazimum value for the stress or the displacement, are considered,
the results of Theorem 3.1 and Proposition 3.2 are not obvious. Furthermore the relaxzation
process involves a minimization over all fourth order tensor A} in the so-called G-closure
set Gy, 1.e., in the set of effective Hooke’s law of composite materials obtained by mizing A
and n in proportions 6 and (1 —0). Unfortunately, an algebraic characterization of the set
Gy (and of its limit when n tends to zero) is lacking. Therefore, the relazed formulation for
a general objective functional is useless because of the absence of a characterization of the
precise class of generalized admissible designs! In a compliance optimization problem, the
relaxzed formulation can be further simplified: as a consequence of the results of Section J
below , the set G} of admissible designs can be restricted to the set of sequentially laminated
composites which is better understood. In this case, the relazed formulation is explicit and
becomes amenable to numerical computations (see Section 5 to 8 below).

4 Explicit formula for the relaxed energy.

This section is devoted to the computation of the integrand

Fy(1) = Zin (F(7,0) + £0)
of the relaxed functional I*(£). This computation is as explicit as possible since it is at
the root of the numerical algorithm proposed in Section 5 below. It begins with a review
of known results that permit to view F(7,0) as the effective energy, at the stress 7, of the
most rigid composite of density €, which turns out to be a sequential laminate of rank V.

It is a known result (see e.g. Section 3 in [6]) on the homogenization of mixtures of
two materials A and 7, where 7 is the weak material that occupies the holes, A and 7
being positive definite, symmetric, fourth order tensors, that
F"(7,0) = min A* 1. 45
(7,6) jmig, A (45)
where G is the set of all possible anisotropic Hooke’s laws of composite materials obtained

by mixing A and 7 in volume fractions # and 1 — 6. Formula (45) is called an optimal
lower bound on the effective complementary energy.

To compute the minimum in the right hand side of (45), it would be helpful to have
an algebraic definition of the G-closure set Gj. Unfortunately, the theory is helpless in the
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matter. For the special case of elastic energies as in (45), however, it is proved in [7] that
the minimum is actually attained within a well-known subset of G}, that of finite rank
sequential laminates, denoted by Lj.

Let us first recall appropriate layering formulae [18]. Throughout this section, we
assume that the material A is isotropic; for any symmetric matrix &,

A = 2ué + A(irf) L,

where I, is the identity matrix, and (u, A) are the Lamé coefficients of the material. The
shear modulus p is always positive so as to ensure coerciveness of the Hooke’s law; the
bulk modulus k = A + 2u/N is also required to be positive if strong ellipticity is to hold.
It turns out that most materials have a non negative Poisson ratio, i.e., that A > 0. Since
this last hypothesis greatly simplifies the computations (at least in the three dimensional
setting), we shall assume henceforth that

w>0, X>0.

Proposition 4.1 Let A* be a rank-p sequential laminate of material A around a core of
material 1, in proportion 6 and (1 — 0) respectively, with lamination directions (€;)1<i<p
and lamination parameters (m;)i<i<, satisfying 0 < m; < 1 and Y7, m; = 1 (these
parameters are related to the volume fractions of material A at each step of the lamination
process). Then

G-0) (4 =4 = AT+ mifie) (46)

i=1

where f5(e;) is a fourth order tensor defined, for any symmetric matriz €, by the quadratic
form
p+ A

m((/lf)@i “e)”,

File)e €= AE ¢ — %IAéeiP +

where (u, \) are the Lamé coefficients of A.

A proof of the lamination formula (46) would parallel that of Proposition 4.2 in [18]
using complementary energy instead of primal energy. Note that f§(e;) is a degenerate
Hooke’s law in the sense that it is a non negative, semi-definite, fourth order tensor.

Theorem 4.2 Whenever 1 is a weaker material than A (i.e., A —n is a non negative
fourth order tensor), the optimal bound (45) is given by
F'(1,0) = min A* '7-7, (47)

A*eLy

where Ly is the set of all effective Hooke’s law of finite rank sequential laminates defined
through (46). Furthermore, optimality in the right hand side of (47) is achieved by a rank-
N sequential laminate (in space dimension N ) with lamination directions coinciding with
the eigendirections of the symmetric matriz 7.
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As already mentioned, the first part of Theorem 4.2 may be found [7], while the
second part is to be found in [5]. For details, the reader is referred to e.g. formulae (6.11),
(6.18), and (7.6) and Remark 3.7 in [5].

Remark 4.3 In Theorem 4.2 the optimal microstructure is not always unique. In the
first place, the optimal sequential laminate may not be uniquely defined. For example, in
the case of an hydrostatic stress (i.e., T proportional to the identity I,), any orthonormal
basis of IRY is a set of eigenvectors of T and thus a set of lamination directions. It can be
checked not to lead to the same homogenized Hooke’s law. There is another type of non-
uniqueness: sequential laminates are not the only known class of optimal microstructures
(although probably the easiest to work with). For example, the so-called concentric spheres
construction [22] (generalized in [38] to confocal ellipsoids), or the periodic arrangement of
adequately shaped inclusions in [39] (see also [21]) are also optimal in specific situations.

In truth, we are interested in F'(7,0), i.e., in the limit of (47) as n tends to zero, but
it is not difficult to pass to the limit in the lamination formula (46) and, thus, to define a
limit set LY. Furthermore, when n = 0 the degenerate lamination formula can be rewritten
as

A=A # (2; mif;‘;(ei)> ) (48)

at least when restricted to the subspace of symmetric matrices where the sum of degenerate
Hooke’s law Y7, m; f5(e;) is invertible. Therefore, as 1 goes to zero, Theorem 4.2 yields
the following corollary.

Corollary 4.4 The function F(7,0), defined as the monotone limit of F"(r,0) when n
tends to zero, is given by

F(7,0) = min A* 7.7, (49)

A*eL)

where Ly is the set of all tensors A* defined by formula (48).

Furthermore, since optimality is achieved for a rank-N sequential laminate with lam-

ination directions given by the eigendirections of T, (49) becomes
1-6
F(r,0) =A'r-7+ Tg*(T), (50)

where g*(T) is a continuous and convex function of T, homogeneous of degree 2, strictly
positive for 7 # 0, defined by

g* (1) = min (Z mifg(ei)> T-T, (51)

N
miZO,Eizl mi=1 \ ;=1

where the vectors (e;)1<i<n are the normalized eigenvectors of T.

The only non-obvious statement of Corollary 4.4 is that concerning the properties of
g*. To check them, one can use the Legendre transform to rewrite

(Zm,fﬁ(e») TeT = mgax{% ST — Zmlfg(el)f . f} .

i=1
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Then, g* is easily seen to be defined as a saddle point: the min and the max can be
exchanged, which yields the desired properties.

In view of Corollary 4.4 the computation of F'(7,6) amounts to a simple optimization
of the lamination parameters m; of a rank-N sequential laminate, while the lamination
directions e; are kept fixed and equal to the eigendirections of 7. However, the lamination
formula (48) yields A*~" at the price of a non trivial inversion of a sum of degenerate
Hooke’s law. Inverting this sum in full generality is a difficult task. In any case we
need only address the class of so-called orthogonal rank-N sequential laminates which, by
definition, admit an orthonormal basis of IR" as lamination directions (€i)1<i<n. We now
recall a result concerning Hooke’s laws for orthogonal rank-N sequential laminates [3].

Lemma 4.5 The inverse Hooke’s law A* ' of an orthogonal rank-N sequential laminate
15 given by the following quadratic form

-0
Ao r = A7 T—l— 20 G(a, 1) (52)
with
N 72
G(ay, 1) = Z —_— —i—Za
i,j=1,i#j (1 B m’ B mf i=1 )
N
A\ N 2 A\ (Z(ai - I)Tii>
BCYTEEYN ZTii + = )
2u+ NA \ o 2u+ NX . A N

ST Y ;ai)

where 7;; denotes the entries of a symmetric matriz T in the orthonormal basis of lamina-
tion directions, and the parameters (c;)1<i<n are defined by

g
a; = — .
2u 4+ A

Remark 4.6 The quadratic form (52) defines a coercive Hooke’s law A* in dimension
N > 3 as soon as none of the parameters m; are zero, that is whenever all lamination
directions have been put to use. (Indeed, m; > 0 for 1 <i < N implies that 1 —m;—m; > 0
for 1 <i,5 < N and i # j.) Thus, in three dimensions, an orthogonal rank-3 laminate
is a realistic composite material. On the contrary, in two dimensions, we always have
1 —m; —m; = 0! Thus, formula (52) only holds for stresses T which are diagonal in
the basis of lamination directions (i.e., such that 7,; = 0). In other words, in 2-D, an
orthogonal rank-2 laminate cannot support a stress whose eigendirections are not aligned
with the lamination directions. This fact has been previously emphasized by several authors
[4], [24], and it bears important consequences for the numerical algorithm to be discussed
in Section 5. Remark also that an orthogonal rank-N laminate is not isotropic even if all
lamination parameters m; are set equal to 1/N. It is shown in [19] that three laminations
in 2-D, and siz in 3-D, are required to obtain an isotropic effective Hooke’s law.

Thanks to the above lemma we now optimize in m; the right hand side of (51) and
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compute the precise value of g*,

L min G(a;, 7).

9°(1) = &~
) 21t 20,50 mi=1

In two dimensions, this computation has been performed in [6]; it yields the following

Proposition 4.7 In two dimensions,

'(7) = oo (Il + 1)’ (5%

where T, and T, are the eigenvalues of the stress T (a two by two symmetric matriz in
2-D). Furthermore, the associated optimal rank-2 sequential laminate is characterized by
its parameters

|72 _ |7

m = —- =
Y nl+nl

(54)

In three dimensions, the computation is more involved (cf. [3] or [20]). It yields the
following

Proposition 4.8 In three dimensions, if 1 < 7 < 73 are the eigenvalues of T, then

1. in the case where 0 < 1 <75 < T3

2u 4+ A

2 .
=" - < 55
2120+ 3N (m+7m+m) ifn<n+mn (55)

g"(7)

A

2 . >
72'“(2/1, T 3)\) (’7'1 + To + ’7'3) Zf T3 =~ T1 + To (56)

g(7) = i ((r+7)? +72) —

2. in the case where 1, <0< 7, <73

+ 175 > — T
20+ A ( [+ 2) )2. BT =T I
(r)y=—"——= |73+ 7 — T 1 o7
T = ey BT ) Ny e 6D
p+ A
g*(T):i((T —|—T)2—|-7'2)—7>\ (1 + 7 —|—T)2 if g+ 10 < — .
o BT 1 TRV 3RS T T
(58)
g*(T):i(T2+T2+T2)—72M n———————(n+m7 —i-T)2
ou 2 2l +N) 2M(2M+3>\)ﬂ P (59)

if 73— Ty > — T1

pt A

3. the remaining cases are obtained from (1) and (2) by symmetry, changing T into —T.
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Furthermore, optimality in the regime (55) is achieved by a rank-3 sequential laminate
with parameters
T3+ To— T T, — To + T3 T+ To — T3

my = ), My = ", My = ] (60)
7'1+7'2+7'3 7'1+7'2+7'3 TI+TZ+T3

in the regime (56) it is achieved by a rank-2 sequential laminate with parameters
T2 71

my; = , Mo = , mg =0; 61
! 7'1—‘1‘7'2 2 7'1—‘1‘7'2 3 ( )

in the regime (57) it is achieved by a rank-3 sequential laminate with parameters

M M
. _7'3+7'2+ +>\’7'1 . _M+)\T3 2 ’U,—|—>\Tl (62)
1_T+T—'u+2>\ , o " T+T—N+2>\ ’
3 2 ,U“F)\ 1 3 2 ,U“F)\ 1
W
Y T3 2 + e )\71
m3 = — H (63)
B + 7y — pt 2
3 2 1 n )\ 1
in the regime (58) it is achieved by a rank-2 sequential laminate with parameters
T3 T2
my =0, my = , Mg = , 64
! > T2 + T3 K T2 + T3 ( )
in the regime (59) it is achieved by a rank-2 sequential laminate with parameters
my = T2 , Mo = N , Mgz = 0. (65)
T2 —T T2 —T

When the material has zero Poisson’s ratio the above result greatly simplifies; we
state it for the reader’s convenience.

Corollary 4.9 In three dimensions, assume that the material A satisfies A = 0. Then,
under the non-restrictive ordering assumption, |1i| < |m2| < |73/,

1 .
g'(1) = @ (|| + || + |T3|)2 if |73] < || + |72, (66)
and 1
g* (1) = 7 (] 4 [72D)* + |73%) if |73] > || + | 72]. (67)

Furthermore, optimality in the first regime (66) is achieved by a rank-3 sequential
laminate with parameters

_msl 7| = |n ] = |7l + |7 A ml 7| = 7|
- , = s =
7|+ | 7| + | 73] 7| 4 | 7e| + |75 7| 4 | 7e| + |73

1

while optimality in the second regime (67) is achieved by a rank-2 sequential laminate with
parameters
|72 _ |71]

Cnl+ Il ‘T 71| + |72|’

m3:0.

my
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The above results which yield an explicit formula for the function g*(7) are at the
root of the numerical algorithm proposed in Section 5. To compute the integrand F,(7) of
the relaxed functional I*(¥), it simply remains to optimize with respect to 6, which yields

) A4 2 if g*(1) > ¢,
Fi(r) = { A7 o+ 2V/lg* (1) — g* (1) if g*(T) < /. (68)

The optimal density is given by

9:min{1, #} (69)

Note that, by virtue of Corollary 4.4, # = 0 if and only if 7 = 0, which means that holes
are created only where the stress vanishes.

A common feature of the above formulae is that they involve the eigenvalues of
the stress 7. The optimal microstructure (namely the rank-N laminate) adapts itself to
the stress that it should sustain, by aligning its lamination directions with the principal
directions of the stress and adopting in each layer a volume fraction which is controlled
by the values of the principal stresses. This correlation between microstructure and stress
is a rigorous consequence of the homogenization theory and not a postulate. In particular
in 2-D we recover the well-known principle of material economy in frame-structures due
to Michell [29].

Remark 4.10 In two dimensions, when the Lagrange multiplier £ goes to infinity, it is
formally shown in [6] that the relazed problem is asymptotically equivalent to the so-called
Michell trusses problem

min / (|| + |72|) dz,
Q

TED(Q)

where Ty, T are the eigenvalues of the stress 7. Note that this result is also immediately
recovered from (53) and (68). There is a rich literature on this problem (see e.g. [34],
[35]), and we refer the interested reader to Section 6 of [6] for a brief discussion of Michell
trusses in our context. Note that this limiting case of the relazed formulation may explain
the success of our computations, and more precisely the fact that many of our optimal
structures look like a network of trusses, or bars, in 2-D.

In 2-D only one type of optimal laminates, namely rank-2 laminates, are used (al-
though they can degenerate to rank-1 when one of the eigenvalues vanishes). On the
contrary, in 3-D there are two distinct regimes of optimal laminates: rank-3 or rank-2
(which in turn can degenerate to rank-1). This can be easily explained as follows. The
conditions defining regimes (55) or (57), where a rank-3 laminate is optimal, imply that the
three principal stresses are of the same order of magnitude. This means that the material
can be optimally layered in the three principal directions, creating a microstructure made
of plate-like holes in a matrix of material. On the other hand, the remaining regimes (56),
(58), or (59), where a rank-2 laminate is optimal, correspond to a setting where one of the
principal stresses is large compared to the other two. In this case, it is more economical
not to layer in the direction of the largest principal stress, and simply to translate, in this
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direction, a planar optimal microstructure which allows the available material to sustain
the largest stress in the direction of translation. The corresponding microstructure looks
like an array of tubes or channels of holes aligned in the direction of the largest principal
stress.

It would be tempting to assume that the 3-D result of Proposition 4.8 degenerates
into the 2-D result of Proposition 4.7 in a plane stress situation, i.e., when one of the
principal stresses is equal to zero. That it is not so is the object of the following

Lemma 4.11 In three dimensions, a plane stress T with eigenvalues denoted by Ty, 7s, T3,
such that

7'1:0, TQ#O, (,lnd7'3§é0,

18 considered. Then,

1
g (1) =+ (722 + 7'32) - (12 + 73)2 =A"'r. T, (70)

20 2u(2p + 3)0)

and optimality is achieved by a rank-1 sequential laminate in the direction ey, i.e.
mlzl, m2:0, m3:0.

In this case the function F(7,0) is simply

1
F(r,0)=-A" 7.1,
0
and the integrand F, coincides with the convex envelope of the original integrand f, when
evaluated at T.

The proof of Lemma 4.11 is immediate through inspection of the formulae in Propo-
sition 4.8. From a practical standpoint, it has the consequence that, if we can use 3-D
microstructures for solving a 2-D problem, then it is preferable to use a “varying thickness
plate” approach (corresponding to the optimal rank-1 laminate) than a “plane Michell
trusses” approach (corresponding the rank-2 laminates, optimal only in 2-D). Mathemat-
ically speaking, it means that, in a 2-D problem of shape optimization, the convexified
formulation (obtained by laminating in the single direction orthogonal to the plane) lies
below the quasi-convexified formulation (obtained by using only “in plane” rank-2 lam-
inates); hence the qualitative differences that will be evidenced between 2-D and 3-D
pictures: in 2-D the optimal microstructures look like a network of trusses or bars, while
in 3-D they will appeal to either trusses or plates.

An other interesting limit case of Proposition 4.8 is that of a uni-axial stress. This is

the purpose of the next lemma.

Lemma 4.12 In three dimensions, a uni-azial stress T with eigenvalues denoted by T, 7o, T3,
such that
7'1:0, TQZO, (,lnd7'3§é0,
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1s considered. Then,
* B+ A 2 -1
TN=—o——1=A7 7T, 71
and optimality is achieved by any rank-2 sequential laminate in the directions ey, es, i.e.,
any triplet my, ms, m3 with

m3:0, mlzo, mQZO, m1+m2:1.

In this case again, F(7,0) = %A*T -7, and the integrand Fy coincides with the convex

envelope of the original integrand f, when evaluated at 7.

The proof of Lemma 4.12 is also immediate by inspection of the formulae in Propo-
sition 4.8. In a uni-axial stress setting, the optimal microstructure looks like an array of
fibers aligned with the stress and any type of cross-sectional arrangement is admissible.

Another special case of Propositions 4.7 and 4.8 is that of hydrostatic stresses. A
hydrostatic stress is of the form
T = pI27

where p is the pressure field. In such a case, concentric spheres assemblages provide
another class of optimal microstructures for the lower bound in Theorem 4.2 or Corollary
4.4 (see [22]). The main interest of these assemblages is that no homogenization process
is required when computing their effective properties. They are an example of “classical”
optimal shapes in the original formulation whenever the boundary condition is a constant
hydrostatic load. Furthermore, they are also an example of non-uniqueness of the optimal
design.

A brief description of these concentric spheres constructions is given below, while we
refer the reader to the classical treatise [14] for further details. Any smooth domain
can be covered by a so-called Vitali covering of spheres, i.e., it can be completely filled by
an infinite number of non-overlapping balls of all sizes. Of course, there is also an infinite
number of such coverings. Then, in each sphere, a concentric spherical hole is cut, and its
radius is determined in a manner such that the volume fraction of material is precisely 6.
This yields a perforated domain € with infinitely many disjoint spherical holes of all sizes.
It is a classical result that, for such a perforated domain under an hydrostatic boundary
condition f = pl,, the average stress is exactly equal to pl, and the average compliance
is 1\;—‘22 where x* is the so-called Hashin-Shtrikman upper bound on the bulk modulus [23].
In our context the following proposition is easily derived from Propositions 4.7 and 4.8.

Proposition 4.13 For a hydrostatic stress T = pl, the optimal bound F(T,0), defined by
Corollary 4.4, reduces to
N 2
F(ph,0) = =, N =2,3,
H*

where * is the Hashin-Shtrikman upper bound on the bulk modulus defined by
1 0 1-6

Nt +2(N—1p  2(N—Dp  Net2(N—1p

25



Proposition 4.13 shows that F(pl,,0) coincides with the average compliance of the
concentric spheres assemblage. In particular, it proves, first, that the concentric spheres
construction is also optimal for the lower bound in Theorem 4.2, and second, that it is a
solution of the optimal shape design (6) for the volume fraction . Remark that this type
of “classical” optimal shapes would be very difficult to compute numerically. Indeed its
boundary is very complex since it involves an infinite number of connected components
on various length scales. Therefore, even in this case, the relaxed formulation is more
practical from a numerical standpoint.

Our focus so far has been the case of a single energy or loading configuration. We
investigate below the case of several energies. As before, we start from the classical result
on the relaxation of I,(¢,n) (see [5], [6], and Remark 2.4 for notation) which states that

Fron 0) = Yt br 72

({71, = i, S 477, (72)
where G is again the set of all possible anisotropic Hooke’s laws of composite materials
obtained by mixing A and 7 in proportions # and 1 — . Formula (72) is refered to as an
optimal lower bound on sum of p effective complementary energies. Once again (see [7]),

the full G-closure set G} can be replaced by that of sequential laminates.

Theorem 4.14 The optimal bound (72) is

Fr({r;},0) = AT, 73
({r:}, r{leng; T (73)

where L; is the set of all effective Hooke’s laws of finite rank sequential laminates defined
through (46). Furthermore, optimality in the right hand side of (73) is achieved, at most,
by a rank-3 sequential laminate in 2-D, and by a rank-6 sequential laminate in 3-D.

Remark 4.15 While the first part of Theorem 4.14 is nearly identical to the single load
case explicited in Theorem 4.2, the second part is completely different (in 2-D the result
is derived in [8], and in 3-D in [19]). The number of laminations does not depend on the
number of energies p, but it is higher than for a single load. Furthermore, the lamination
directions are not necessary aligned with the principal stress directions. This is a serious
obstacle, and no explicit formulae are available as of yet for the computation of the op-
timal laminate in (73). In other words, the optimal microstructure has to be determined
numerically rather than through an explicit formula.

To deduce an expression for F? from Theorem 4.14, we can now let 1 tend to zero in
the lamination formula (46) to obtain the limit set L) of sequential laminates defined by
formula (48). We thus obtain

Corollary 4.16 The function F?, defined as the monotone limit of FP" when n tends to

zero, 1s given by

FP ({r;},0) = min A* YT (74)
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Furthermore, since optimality is achieved for a finite rank sequential laminate, (74) be-
comes

(b 0) = YA e g (), (75)

where gy is a continuous and convex function of {7;}, homogeneous of degree 2, strictly
positive when at least one 7; # 0.

The above result is very similar to Corollary 4.4 and their proofs are parallel. The
major difference is that we do not have an explicit formula for g;. Indeed in view of the
lamination formula (48) and Theorem 4.14, g* is obtained as the result of an optimization
not only on the parameters m;, but also on the lamination directions. We have been unable
to perform this optimization by hand, and in future numerical computations we will rely
on a numerical procedure for the optimization of the laminate microstructure.

5 A numerical algorithm for 2 and 3-dimensional shape op-
timization.

5.1 description of the algorithm

This section presents the proposed numerical algorithm for shape optimization, which is
based on the homogenization method as already announced in [4]. The key idea is to
compute “generalized” optimal shapes for the relaxed formulation, rather than “classical”
shapes which are merely approximately optimal for the original formulation. We thus
begin by recalling the relaxed formulation as computed in Sections 3 and 4 above. The
objective function is

I := Ey(r
)= min, [ Fd (76)
where
Fy(17) = min {mln A T—i—ﬁ@} (77)
0<9<1 | A*eL?

and X(Q) is the set of statically admissible stresses defined by
$(Q) = {r € LA RY) | divr=0inQ 7-n=]ond0}. (78)

Furthermore, in Section 4 we performed an explicit computation of the minimizer A* in
the right hand side of (77), in two or three dimensions.

The relaxed formulation (76)—(78) evokes a problem of nonlinear elasticity. The
optimal density (a “generalized” shape) is recovered by the optimality condition on 6
in equation (77). A simple algorithm solves, in a first step, this nonlinear minimization
problem in the stress 7, by using, e.g., a conjugate gradient method. In a second step
an optimal density 6 is recovered through the optimality condition. Such an approach
has been implemented in [6] for the 2-D case, but it is not completely satisfactory for the
following reasons. As in all computations involving complementary energies, high degree
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finite elements have to be used for stress accuracy. The resulting computations are very
costly and limited, in practice, to a two dimensional setting. Furthermore, the highly
non-trivial energy Fj is not smooth at 7 = 0 which calls for special care in the gradient
method. Convergence to the minimum is usually fairly slow.

Therefore, we prefer another algorithm, the so-called “alternate directions method”,
that we now describe. It is based on two key ideas. The first one is to consider the
relaxed problem I*(¢) as a minimization problem not only for the stress, but also for the
structural parameters, the density 0, and the microstructure A*. The second key idea is
not to try to minimize directly in the triplet of variables (7,6, A*), but rather to adopt an
iterative approach and minimize separately and successively in the design variables (6, A*)
and in the field variable 7. The minimization in 7 for fixed design variables amounts to
the resolution of a problem of linear elasticity for the structure defined by the previous
design variables. The minimization in (0, A*) for a fixed stress field is explicit in view of
the formulae obtained in the previous section. Consequently, the algorithm is structured
as follows:

1. Initialization of the design parameters (6y, Aj) (for example, taking 6, = 1 and
Ay = A everywhere in the domain).

2. Iteration until convergence:

(a) Computation of 7, through a problem of linear elasticity with (6,_,, A%_,) as
design variables.

(b) Updating of the design variables (6,,, A%) by using the stress 7,, in the explicit
optimality formulae of Section 4.

Convergence of this iterative algorithm is detected when the objective function be-
comes stationary, or when the change in the design variables becomes smaller than some
preset threshold. Notice that the above iterative process always decreases the value of the
objective function at each iteration. Indeed, since A} minimizes the compliance under the
stress field 7,,, and since 7,,,1 minimizes the elastic complementary energy corresponding
to the Hooke’s law A, it follows that

/(Arlfl)ilTn'Tndx'i_e/ O,_1dz > /(A,’Z)’lTn-Tnderé/ 0, da
Q Q Q Q

/(A;)717n+1 'Tn+1d$+€/ 0, dz .
Q Q

Y

Remark 5.1 The alternate direction algorithm is apparented to the two previously known
methods: that of [11], [36], and that of [6]. As already mentioned, the latter considers
the relazed problem I*(£) as a problem of nonlinear elasticity. The former transforms the
minimization over statically admissible stresses into a mazimization over displacements,
and (76) becomes

I"(f) := min min max {2 f-uds—/QA*e(u)-e(u)d:z:—i—E/QHdm}, (79)

0<0<1 A*eLj ucH (Q)N 90

28



where e(u) is the strain tensor (Vu + V'u)/2. The ensuing numerical scheme is based
on the first order optimality conditions at the saddle point of the functional (79). This
leads to a rather intricate updating process for the design variables (volume fraction of
material 0 and the individual volume fractions and orientations of each layer). The com-
putation is also performed using alternate directions; firstly the solution uw of a problem
of linear elasticity where all design variables are fized is obtained, then the design vari-
ables are updated using the optimality criterion. The existence of a saddle point for the
min - ry MaZyer @)y problem 79 is established in Theorem 4.1 of [27]; note however that,
in the resulting formulation, the minimization in 0 must be performed last.

the min-maz problem (79) is not guaranteed since the integrand does not satisfy any
concave-convex type condition.

5.2 A few technical algorithmic issues

Convergence criterion:

The successive problems of linear elasticity are solved by the finite element method. We
use quadrangular @1 elements for the displacements while the stresses 7,, and their prin-
cipal directions and principal values, are computed at the center of each element. The
parameters for the optimal laminate are then computed in each cell using formulae (54) in
two dimensions, or (60-65) in three dimensions. The Hooke’s law for the optimal laminate
is computed with the help of Lemma 4.5.

The procedure is iterated until the quantity
/(A:LJrl)flTnJrl‘TnJrl —{—E/ 0n+1
Q Q

/ (A%) e 4 e/ o
Q Q

becomes smaller than a preset threshold. About 100 iterations are required to reach
a criterion of 107°. On Figure 3, the evolution of the objective function in a typical
calculation is plotted. Other convergence criteria could be used, for instance the L? norm
of 71 — 77,

max | max(6]*" — 67]),1 —

Volume constraint:

In most of the computations presented here, the Lagrange multiplier ¢ is held at a fixed
value. Ideally, one could perform several calculations with different values of £, then try
to adjust this parameter in order to match a given constraint on the volume. As we
explained in Section 3, we do not know how to determine ¢ beforehand. As an alternative,
computations were also performed, where ¢ is adjusted at each iteration, so that the
corresponding value of the optimal density satisfies the volume constraint. In other words,
once the stress 7, is computed, we determine 6,, and ¢,, by solving

. g*(Tn) _
6, = min{1, 4/ o } /99"_6

through a simple iterative procedure.
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Singularities in the composite Hooke’s law:

The generalized Hooke’s laws computed at each iteration turn out to be singular, an
undesired feature when solving problems of linear elasticity. This singular behavior has
several sources.

First, we note that the effective tensor is equal to zero when the density vanishes.
Implicitely, the corresponding stress field should vanish simultaneously. This problem,
which occurs in 2 and 3-D, is easily circumvented by imposing a positive threshold on
the density. In practice, the smallest admissible value of @ is fixed at 107%. Numerical
experiments suggest that the choice of 1073 is not important.

We also remark that rank-1 and rank-2 laminates produce degenerate Hooke’s laws
(c¢f. Remark 4.6). In 3-D, the proportions m; are forced to be greater than zero. Conse-
quently, the algorithm only uses rank-3 laminates, which are non-singular.

In 2-D, rank-1 laminates are eliminated like in the 3-D case. However, the algorithm
uses rank-2 laminates as optimal microstructures. The singularity is avoided by adding a
small correction term to the composite Hooke’s law.

We describe three attempted regularizations of rank-2 laminates, in the case where
the principal directions of 7 coincide with OzOy (the other cases follow by rotation).
The elasticity tensor of the corresponding rank-2 laminate only has the following non-zero
coefficients

dkp(k + p)0(1 — Omy)mey
Akp mimo6? — (k + p)?(1 — 0)
dkp(k — p)0*myms
Akp mimo6? — (k + p)?(1 — 0)
dkp(k + p)0(1 — Omy)m,
Akp mimo6? — (k + p)?(1 — 0)

* j—
A1111 -

* A% _
A1122 - A2211 -

*
A2222

The first method of correction simply amounts to replacing A}y, = ATy = Adi1s =
Aj 5 by 200, where § is “small”. The second method consists in replacing A*, by the opti-
mal laminate corresponding to a mixture of A and §A, i.e., by a configuration that achieves
the minimum of F°4(7,#), in the particular case where the soft material is proportional
to A. This simplifies the computations of the optimal Hooke’s law which is non-singular.
The third regularization, corresponds to the 2-D projection of a rank-3 laminate, with
laminations along Oz, Oy, Oz in proportions (1 —d)my, (1 — d)m, and 0 respectively. The
resulting elasticity tensors are easily computed with the formulae from Section 4.

Numerical experiments suggest that the three corrections give comparable results al-
though the second one is slightly better and converges faster. Computational runs suggest
that when the coefficient J is too small, the algorithm may select a wrong solution, possibly
a local minimum. In practice we use § = 1072,

Checkerboard instabilities:

Our algorithm is subject to checkerboard instabilities for the density € similar to those
reported in [10],[24],[25]. These instabilities do not appear if the displacements are com-
puted using higher order elements (@2 in our case), while the lamination parameters are
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computed with only piecewise constant stresses. Note, however, that ()2 elements are
expensive for very fine meshes and for 3-D calculations.

The numerical onset of checkerboard patterns is still mysterious, although it is worth
noticing that piecewise constant stresses, which are equilibrated with respect to deforma-
tion fields of Q1-displacements, are checkerboard-like. In practice, such instabilities only
appear after a large number of iterations, when the convergence criterion is very tight (cf.
Figure 5).

In 2-D calculations, we eliminate these instabilities with a method used to filter the
pressure in a Stokes flow computation [12]. Once the piecewise constant optimal densities
07 are determined, we project them on super-elements, which are clusters of 4 adjacent
elements, so as to eliminate the checkerboard mode and preserve the overall density. We
have not experienced any checkerboard patterns in 3-D calculations, and all the examples
shown below have been computed without filtering.

6 Penalization of intermediate densities.

As explained in Section 5, our numerical algorithm for computing optimal design is based
on the relaxed formulation introduced in Section 2. The numerical computations deliver
relaxed, or generalized, optimal shapes — a density of material — rather than classical
optimal shapes for the original formulation — a characteristic function of the material
domain. In other words, our method produces a layout of material, which, as expected,
includes large regions of composite materials with intermediate density. From a practical
standpoint, this is an undesirable feature since the primary goal is to find a real shape — a
density taking only the values 0 or 1! This drawback is avoided through a post-processing
technique that penalizes composite regions. The goal is to deduce, from the optimal
densities, a quasi-optimal shape. In loose terms, the solution of the relaxed problem is
projected onto the set of classical solutions of the original problem, in the hope that the
value of the objective functional will not increase too much in the process.

The strategy is as follows. Upon convergence to an optimal density, we run a few
more iterations of our algorithm where we force the density to take values close to 0 or
1. This changes the optimal density and produces a quasi-optimal shape. Of course, the
procedure is purely numerical and mesh dependent. The finer the mesh, the more detailed
the resulting structure will appear at the outset of the penalization process. The method
works well, because the relaxed design is characterized not only by a density 6 but also
by a microstructure A*, which is hidden at the sub-mesh level. The penalization tends to
reproduce the microstructure at the mesh level.

Two penalization techniques for the intermediate composite densities have been used.
Both amount to a modification of the explicit formula (24) that expresses the optimal
density in terms of the stress. Specifically, instead of updating the density with the true
optimal density 6,,;, a value 6,., is used. Our first choice for 8,.,, already described in
[2], 4], is

1 — cos(ml,pt)
Open = — s
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The choice of a cosine function for the penalized density is arbitrary. If 6,., is too close
to ¢, the scheme is insensitive to the proposed penalization, while if 6,., is forced too
close to 0 or 1, the fine patterns of the shape are destroyed.

In the context of plate thickness optimization, another technique has been pro-
posed [9],[40]. It consists in setting

Open = (03pt/p)1/(1“’) for some p < 1.

This alternate choice also gives good results. It corresponds to the optimal value of 8 for
a modified integrand, namely

F, (1) = orgnoi21 {F(r,0)+ 67} |
which is supposed to take into account “manufacturing costs” of perforated materials (the
“cost” of intermediate densities increases in (80) as p decreases from 1 to 0).

7 Quasiconvexification versus convexification.

This section is devoted to a comparison of the relaxed formulation introduced in Section 2
with the convexification of the original problem. Such a comparative study is motivated by
the occasional use of the convexified formulation for the computation of optimal shapes,
under the name of “fictitious material approach” (see e.g. [30], [35]). Let us briefly
describe the argument. When combined with the penalization procedure, the numerical
algorithms for computing optimal shapes — based on the relaxed formulation — may seem
self-defeating. Homogenization theory is introduced, proper optimal microstructures, and
complicated formulae for updating the design variables are laboriously derived, and yet, in
the end, this wealth of information is seemingly wasted through the penalization process!
A natural idea is thus to propose a simpler approach based on the convezification of the
original problem (which is easily computed, see below), coupled with the same penalization
procedure, as described in Section 6. The advantages of the approach are the following: the
layout optimization problem still becomes a sizing optimization problem, i.e., shapes are
replaced by densities. Implementation is straightforward since the convexified formulation
is very simple, no knowledge of homogenization or composite materials is required and,
in 2-D, the method relies on the physical notion of “varying thickness” plates. Although
comparable results are produced in a few test cases, the method is much more sensitive
to the penalization and it usually yields worse results than those of the homogenization
(or relaxed) method.

The “fictitious material” approach considers the following state equation

o=0(z)Ae(u) e(u) = (Vu+ Viu) /2
divo =0 in 0
o-n=f on 012,

where 6(z) is a density function with values between 0 and 1. The goal is to minimize,
over all the possible densities, the weighted sum of the compliance and of the weight. Thus

we set
CIW):=  inf <9+e/9 )
( ) 0(w)€L1£(Q;[0,1]) C( ) Q ($)
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where the compliance is defined by

0= [ fou-= / < (B(x)A) 0,0 > |
o0 Q
Upon using the principle of complementary energy and switching the two minimizations,
the following equivalent formulation is derived:

CI(f)= inf /Q Cf,(7)dz, (80)

TEX(Q)
where C'f, is the convex envelope of the function f,, ¢f. (14),

Cf(r) = Alror+0 WA YT-T >4,
AT oVIA T if AT <o,

and ¥() is defined in (13).

Formulation (80) is called the convexification of the original problem (8) or (12).
Since it is a convex minimization problem, the existence of minimizers is straightforward
and the infimum in (80) is a minimum. Recall that the original formulation is

I(6) = inf [ fi(r)dm,

ceX(Q) Jo

while the relaxed (or homogenized) formulation is

I'(¢) = inf /QQfg(T)d(II,

TEXL(Q)

where @ f, is the quasi-convex envelope of f; (see (33)). Furthermore,

fe(m) > Qfe(r) = Cfol7),

where the inequalities are strict for most choices of the stress 7. Notice, however, that

I(0) = I*(¢) > CI(¢) .

We have numerically implemented the convex formulation with the “alternate direc-
tions” strategy described in Section 5. For a given density 6, we compute the stress 7
solution to the linear elasticity state equation, then update the design variable 6 using the
optimality relation

1 if A lr -7 >4,
0(z) = ieoA—1
VAT T i AT < 0.

The algorithm converges quickly and smoothly and we supplement it with the penalization
procedure of Section 6. A few numerical results are displayed in Section 8.2 and compared
with those of the homogenization method. The fictitious penalized designs are qualitatively
comparable to their homogenized counterparts, but they lack the complexity and pattern
details.

The absence of implicit sub-mesh microstructures explains the lower performance of
the fictitious material approach. Loosely speaking, the convex formulation has a single
free design parameter — the density # — while the homogenized, or relaxed, formulation
has more parameters — 6 and the microstructure A* — allowing for greater flexibility in the
design of optimal shapes.
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Remark 7.1 As already pointed out, in a 2-D setting the convezified formulation (80) can
be viewed as a variable thickness approach for a plate. This is formalized in Lemma 4.11,
which claims that, in a plane stress problem, the three-dimensional relazed formulation
coincides with the two-dimensional convezified formulation. In other words, the optimal
microstructure is everywhere o rank-1 layering in the x, direction — a varying thickness
plate — if the boundary conditions are such that the solution of the 3-D relazed formulation
does not depend on the first space variable x,. Also, in this case, the 3-D relaxzed energy
Qfe(0,7,73) is exactly equal to the 2-D convex energy C fi(1y,73). When departing from
a plane stress setting, the convexified formulation (80) has no physical meaning.

8 Numerical results.

In this section, we present several numerical examples which illustrate various aspects
of the method. The workspace €2 is discretized with quadrangular elements in 2-D and
hexaedral elements in 3-D. The displacement is approximated by Q1 interpolation and the
resulting stress field is averaged on each cell.

All the computations are performed with the bulk modulus £ and the shear modulus
211 equal to 1. The smallest admissible value of 6 and of the proportions m; is 1072, in order
to avoid very low proportions. In practice, the value of this parameter is insignificant;
any small number produces similar results. The density # is represented with a gray
scale: areas where # = 1 (pure material) are black, whereas white zones correspond to
voids. The calculations are initialized with the most rigid shape, i.e., 6, = 1, A =
A everywhere in 2. We attempted several computations with other initial shapes and
obtained very similar designs. The method seems stable with respect to the choice of initial
configuration, although the number of iterations required for convergence may be greatly
affected. This stability might be an indication of uniqueness of the optimal composite
solution, at least within the class of rank-2 laminates, for the tested problems (workspace,
boundary conditions and loading). Further tests are in progress for problems where non-
uniqueness of the optimal generalized shape is known.

8.1 The cantilever 1.6:

This example has already been investigated by several authors, and it has become a
sort of benchmark for layout optimization algorithms. The workspace {2 is a rectangle
of dimensions 1.6 x 1 discretized with a 4000 element mesh. The object to be found is
submitted to a vertical point load applied at the middle of the right vertical side, while the
left side is clamped. Similar designs would have been obtained under a uniform traction
on a small part of the side instead of a point load.

Figure 1 shows the output of the algorithm after 30 iterations. Although one can
guess a “shape” on the edges of the structure, its center contains a large composite zone.
Figure 3 represents the objective function history for this calculation. The corresponding
penalized shape is shown in Figure 2. Most of the gray material has been removed, while
the difference in the objective function is only three to four percent. In particular, the
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fuzzy center has been replaced by a bar structure reminiscent of a Michell truss.

If the previous non-penalized computation is continued, checkerboard patterns are
produced (cf. Figure 4). Their appearance can be detected on the plot of the objective
function, Figure 5. Indeed, one remarks a sharp decrease after the first iteration, and sta-
bilization around a specific value after 5— 10 iterations. After sufficiently many iterations,
the objective function decreases again, with the onset of checkerboard instabilities. On
Figure 5, the objective function is also plotted for a computation with filtering.

8.2 The bridge arch:

In this example, the workspace is a 2 x 1.2 rectangle. The structure is simply supported
at the edges of its base, on a zone of width 1/16. A vertical point load is applied at
the middle of the lower side. Since the applied forces, the initial configuration and the
boundary conditions are symmetric, a symmetric solution is expected and the computa-
tions are performed on half of the domain only. Figures 6.a-c show the resulting composite
design, for different mesh sizes (1080, 4320 and 17280 elements). Figures 7.a-c display the
corresponding penalized designs. The composite designs are stable with respect to refine-
ment of the mesh, whereas, as expected, the number of fine structures appearing after
penalization strongly depends on the discretization.

We also compared the relaxed formulation to the convexified one (cf. Section 7).
Figure 8.a-b show the output of the alternate directions algorithm for the convexified
functional and the corresponding penalized design (the mesh is that of Figure 6.b). The
objective function histories of Figure 10 demonstrate that the performance of the latter
design is worse than that of the penalized design obtained through relaxation. Similarly,
Figure 9 shows the design resulting from a penalization of composites from the beginning
of the computation. The resulting objective function is significantly higher, as evidenced
in Figure 9.

8.3 The 3-D cantilever 1.6:

This is the 3-D analog of the first example. The workspace is a 1.6 x 0.8 x 1 box, clamped
at the right vertical side. A point load is applied in the middle of the opposite face.
We used a mesh of 19200 elements and started from an initial configuration with 6, = 1
throughout. The algorithm produces a symmetric layout, which permits to compute a
half domain only.

The 3-D pictures are harder to visualize. Figure 11.a represents the iso-surface 8 > 0.3
of composite density. In this example, the iso-surfaces are smooth and embedded into each
other as 6 increases. The next picture (Figure 11.b) shows the design after penalization,
the effect of which is to cluster the available material in plate-like or bar-like components:
here, a thin vertical plate (with a width of only one element) increases the rigidity of
the center-part, whereas 3-D trusses reproduce patterns similar to the 2-D design (cf.
Figure 2).
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8.4 The 3-D electric masts:

This example is an attempt to compute a more realistic structure. The workspace is a
T-like box. Two symmetric vertical loads are applied in the middle of the lower edges of
the horizontal part of the T" and represent the force exerted by the wires on the mast.
Simply supported boundary conditions are imposed at the corners of the base of the T.
In the calculations, the computed shapes are forced to occupy 15% of the total volume.

Only a quarter of the object is computed, by virtue of the symmetries. The first
calculation (Figure 12.a-b) represents the composite, resp. penalized designs, produced
by our algorithm for a T-box with a 80 x 40 x 46 bar and a 40 x 40 x 80 foot, using a mesh
with 14976 hexaedral elements. As in the case of the 2-D bridge, the algorithm builds
a quasi-circular arch to connect both edges of the 7. The horizontal bars that link the
feet of the mast in the penalized design do not appear in the composite picture. Remark
that the penalization produces a bar-like design that evokes the shape of existing electric
masts. As explained above, the number of such bars depends of the mesh, but also on
the size of the workspace. An “industrial” computation would require a finer mesh, and a
larger workspace in the z-direction.

Figures 13.a-b, show the resulting designs for a T-box with a 80 x 20 x 20 bar and a
40 x 20 x 80 base, meshed with 24000 hexaedral elements. The algorithm could no longer
build an arch as before, and it creates a plate-like dome. The computation took about
three days on a HP9000/755.

Figure 1: cantilever: composite design.
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Figure 2: cantilever: penalized design.
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Figure 3: typical convergence history.
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Figure 4: cantilever: checkerboard patterns.

‘ 1 ]
—— With filtering 1
L e Without filtering | |
0.37 ] ———————————————————————— u
0.365 |\ ———————————————————————— -
0.36 N\ ———————————————————————— -
basst T — .
0.35 ; ———————————————————————— u
i \ \ i ]

0 50 100 150

Iterations

Figure b: convergence history showing the appearance
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Figure 6: bridge arch: composite design for different mesh sizes.

Figure 8: bridge arch resulting from optimizing the convexified functional; fictitious com-
posite solution (left) and penalized (right).

Figure 9: bridge arch resulting from penalizing the composites from the start of the algo-
rithm.

39



1.5

’ | |
r ¥ s ‘ 1
L ‘ — Relaxation .
L ‘I. ‘ Convexification _
A N Penalizing from the start |

1 i ‘

S O S

é i - beginning of the penalization

Bt L \ ;

< |

S - 1

[5) ‘

= Y e

Iterations

Figure 10: Conwvergence history: relazation vs. convexification.

Figure 11: 3-D cantilever: composite solution (left) and penalized (right).
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Figure 13: electric masts: composite solution (left) and penalized (right).
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