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This article presents an overview of the current state ofveivéational theory of quasistatic
brittle fracture. It is shown that that theory, while depagtonly slightly from the classical
theory of Griffith, alleviates many of the obstacles usualigociated with quasistatic crack
growth. The underlying mathematics are outlined, the variavailable results sketched, and
the drawbacks discussed. Two numerical computations begtind the scope of the classical
theory, are presented.

1 Introduction

The basic concepts of brittle fracture, established by &RIFBITH in the 1920’s [28] and
refined by various brilliant followers in his footstep, aery much entrenched in the collective
psyche of the contemporary mechanician. Yet, the theorpées and continues to be plagued
by major defects, most notably its inability to predict deatiation, to follow the crack path,
or to decide if the crack evolution is "stable”.

As a result, a host of ad hoc remedies have been proposedumdiiual success. But,
more often than not, those are viewed as additional ingnésligvhich should be appealed to
whenever the mechanical environment becomes hostile.alttisnes as if the crack had to
carry its own toolbox.

This, in our opinion, runs contrary to the seminal tenet oftsmium mechanics: scarcity
of ingredients, abundance of results. In an effort to abidthts principle, J.J. MRIGO and
| have proposed an economical theory that departs as ltmssible from that elaborated by
A. GRIFFITH. In doing so, we were inspired on the one hand by our own workamage
[23], but also very much guided by the impressive work on ienaggmentation initiated by
D. MUMFORD & J. SHAH [32] and beautifully formalized and expanded by Bz BIORG!
and the school he created. EEMIORGI created the tools without which the variational
formulation could not exist.

The model we propose is variational and only applies to gtet#t evolution. It does
remove many of the obstacles associated to the classiaatdythie is indeed very close in
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spirit to the original model proposed by A.RB-FITH. But, of course, there is a price to pay:
because itis based on global minimization, it poorly hasdtet devices, as will be evidenced
in the fifth section. This can be somewhat remedied, bothimvitte model, and by weakening
the minimization process, as will be further detailed intthection. But there too, there is a
mathematical price to pay because local minimality (medbibty) is a delicate topic, for
which few tools are available.

Thus, | do not contend that we have the final word on quasistedick growth, but merely
that a bit of flexibility goes a long way in what we deem to beasomable path that runs right
along the field of classical fracture mechanics.

In these notes, | outline the model — increasingly refercedds the variational theory of
brittle fracture — from its inception to its current statiie.this effect, a first section is devoted
to a review the classical model of brittle fracture, as folated throughout the last eighty
years by A. QRIFFITH [28], but also by e.g. G.l. BRENBLATT [7], G.R. IRWIN, [30] ...
The reader might however encounter some difficulties, shelu attempt to locate a similar
presentation in the existing literature. A good referemcenat direction is the book by H.D.
Bui [14]. | then show how the time dependent model that J.ARM O and | have proposed
in [22] departs from that theory.

A second section discusses the time-discretization ofrtiaatel, a natural step from the
standpoint of any computations. | then indicate how and whenime continuous model can
be seen as a limit of that discretization as the time steprhes@maller and smaller. | do not
present complete proofs, because this is not intended asreematical paper, but rather try
to point out the kind of obstacles one is confronted with wagempting a rigorous analysis.
The provided references should satisfy the mathematioadlined reader.

A third section presents a near exhaustive compendium alaala theoretical results,
which can still be done at this stage, but may prove imposs#itiould the variational theory
become more popular. A host of known facts or folklore candoevered, clearly advocating
the relevance of the model.

The variational theory is far from picture perfect, and therth section addresses the main
unsolved issue and suggests possible remedies. The meiteostill at an embryonic stage.

Finally, the last section develops two numerical compateti The first was presented in
[12] and the second in [23]. The first computation follows akc&om its initiation to the
ultimate failure of the sample.The variety of pathologieslenced throughout the growth of
the crack positions the first example far beyond the reacheo€liassical theory. Yet, the vari-
ational theory yields results that are, at the least, initaisle agreement with the experiment.
The second computation is a static one, yet it demonstratdghe variational framework
can capture the occurrence of multiple cracks without irtipgrany new ingredients into the
theory.

2 Classical brittlefracture versus variational brittle fracture

As is customary in fracture mechanics, | develop the modalimo-dimensional setting, then
generalize it to the spatial case.

Consider a linearly elastic material occupying a donfiwith elasticity A, so that its
constitutive behavior is described by the following strssain law:

o(z) = Ae(u)(x), with e(u) := 1/2(Vu + Vu').



The possible defects in that material at timare assumed to be a cragkt), which follows

a preset crack path O «(t). The preset path may go to the boundary¥®fso as to allow
debonding; thuf' c Q. | further assume that(t) is connected, so that it can be seen as
a curve parameterized by its arclendth), that is that the knowledge of the crack length
amounts to that of the crack itself. Equivalently, the krexige of the crack tip is sufficient to
describe the whole crack site. In other worgl§,) is in fact a function of(¢),

V(1) =T ().

Throughout this section, | assume that the only "loads” emetdependent boundary dis-
placement$/ (¢, z) on a par?, of J2; one speaks of hard devices. This seemingly innocu-
ous assumption is in fact fundamental, and the considerafibody or surface loads remains
problematic in the proposed framework as noted at the oriSgaiion 5 below; see however
the comments thereafter, which suggest a possible resolatithe dilemma posed by force
loads.

It is actually simpler to view the fiel@ (¢) as the trace oh(2, of a field, still denoted by
U(t), defined this time on all oR?. We further assume théf(t) possesses all necessary
smoothness in.

Now, for a given crack length(at timet), the displacement field(Z, t) should be in static
equilibrium with the loads at that time (this is the meanifigjoasistatic). As is classical in
linearized elasticity, this can be seen as a minimalityest&nt for the elastic energy among
kinematically admissible displacement fields. Thug, t) minimizes

E(v,1) := / 1/2A4e(v) - e(v)dx, (2.1)
Q\r()

among allv’s such that = U(¢) on Q4 \ T'(1).
Of course, this is of no value as long as the actual crack letg}t is not determined.
Assuming that is smooth enough ify one computes the energy release rate

The evolution law foi (¢) suggested by A. 8IFFITH is as follows:

i %(t) > 0 (the crack can only grow);

ii. G(I(t),t) <k (kis the critical energy release rate);

iii. ﬂ(t)(G(l(t),t) — k) = 0 (the crack will not grow, unless the energy release rate is

critical).

From now on, if(¢) satisfies the evolution law, | sett) := u(i(¢), t), the minimizer for (2.1)
atl =1(t).

At this point, all classical ingredients of Griffith’s thgoof brittle fracture have been
introduced. | will comment at a later stage the introducfiooposed by G.l. BRENBLATT
of a cohesive surface energy. In any case, from now onwardGhifith’s mode] | mean
guasistatic equilibrium (2.1), together with itens iii of the evolution law above.
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Remark 2.1 As is well known, Griffith’s criterion, in spite of its longéy, is plagued by
at least three major defects listed and commented below.
First, the crack path must be preset, since a single equedionot possibly predict the

crack tip path.
OF

Then, crack initiation is impossible if e.g(0) = —l(-,O) = 0. For example, a pre—
cracked half-plane; > 0, with a pre—crack of lengthorthogonal to the boundary ag = 0
is considered; at; = +o0o, a mode | load , that is an increasing vertical normal streks, o
opposite sign on each side o5 = 0 and of magnitude is applied. Then, it can be shown
that the crack will increase wheris of the order ofl /v/1 (see [30]), so that, as\, 0*, the
magnitude of the load required to further advance the crackimes infinite. In all fairness,
this second defect is viewed as an asset by some who argusinofithe introduction of an
initial defect; our own bias is contrary because it is oumagi that one should first explore
all ramifications of a model before adding extraneous compl@s to that model.

Last, smooth crack growth is impossible if e@(l,t) ; atl = I(¢), a situation which
can arise in many examples (see e.g. [22], Section 4).

Various remedies have been proposed on a case by case hbasiere is, to my knowl-
edge, no unified way of curing all three defects at once, leedithat proposed hereafter.

| submit that Griffith’s model can be rewritten in a more paldé manner as detailed
below. Define
E(w,l) := E(v,l) + kl.

First, quasistatic equilibrium, together with iteirof the evolution law is easily seen, through
elementary variations, to be equivalent to

DE(u(t),l(t)).< ;’__;(‘t(;) ) >0, v=Ut)ondQ\T(), 1>11), (2.2

where D€ is the Fréchet differential — assumed to exist <£6#, ) with respect tov,[. In
turn, itemii: of the evolution law reads as

d oU
&l 1) = /Q o Al el 0) (2.3)

(Recall thatl/(t) has been defined on all @?2.) The balance law (2.3) may be viewed as
equivalent to Clausius-Duhem inequality, provided thatdissipation at is identified with
kl(t).

In conclusion, our equivalent definition @riffith’'s modelis as follows: any evolution
u(t), [(t) that satisfies (2.2),(2.3), together with the irreversitewth condition on the length
of the crack(item in the evolution law).

Now, note that (2.2) is a first order optimality condition feft), ((¢) to be a one-sided
local minimizer for&(-,-) among alll > I(t), v = U(t) onQ \ I'(l). A first and slight
departure fronGriffith’s modelwould be to assume local minimality in lieu of (2.2). Unfor-
tunately, such a modified stability criterion raises seMisgaues: firstly, the notion of locality
is distance dependent and there is no guiding principledic#tes the proper choice of that
distance; then, local minimizers of non—convex functisraak poorly understood in dimen-
sions greater than 1. See however [17] for a one-dimensgindy of local minimizers and



also Subsection 5 below. Consequently, we arbitrarilyngfifeen the postulate by requiring
that local minimizers actually bglobalminimizers. In doing so, we can significantly enlarge
the set of admissible cracks. In fact, we chaop the preset path assumptialiogether, since
global minimization will act as a drastic selection critari We define, for all compact sdfs
with finite Hausdorff measure , the total energy

E(w,T) := /Q\F 1/24Ae(v) - e(v)dz + kH (T \ 995);

note that there is no surface energy paid for the part of thekahat lives on the traction free
part of the boundargQg := 9Q \ 99y, as it should be. We are thus led to the following

Variational Evolution 2.2 At each time,

i. One-sided minimality(u(¢), T'(¢)) minimizesE(v,I") among all admissibl¢v, '), that
is
v=U()ondQg \T
I'>TI(t)

ii. Non-dissipativity:E(u(t),I'(t)) is absolutely continuous ihand satisfies

%E((u(t),F(t)) = / Ae(u(t)).e(%—[t](t)) dx.

Q\I'(t)

Let me stress again that the variational evolution abovderned to as thetrong varia-
tional evolutionfor the remainder of the paper — only differs from Griffith'®del in that the
necessary first order optimality condition for local miniitya(2.2) is replaced by a statement
of global minimality. This makes all the difference!

Our goal is two-fold: a thorough investigation of the conseraces of such an evolution on
the one hand, and an existence result that will guarantseeexie on the other.

My focus here is the second point and | merely indicate in émearks below two conse-
guences of the variational evolution, referring the readd@?2] for a detailed study of the
mechanical implications of that evolution.

Remark 2.3 Crack initiation is automatically triggered in finite tima, least for propor-
tional loads, that is for field& (¢) of the formtU, U being a fixed displacement field. Indeed,
as long ad'(t) = 0,

E(u(t),0) = t*B(u(1),0) /¢ oo,

sinceu(1) # 0, henceE(u(1),0) # 0. But cutting awaydS2, costs at mostH*(9,)
in surface energy, while the associated minimal elasticggnis null. Thus, the competitor
0,004 haskH!(09),) as total energy, definitely less than thatgf), () that goes tao with
t. This is in striking contrast with Griffith’s model, as alddanoted in Remark 2.1 above.

Remark 2.4 Singularities, which play a pivotal role in Griffith’s modf80] are also of
paramount importance in the strong variational evolutidh 8s demonstrated in Section 4.4
of [22]. In a two-dimensional setting with an isotropic méeof stiffness tensod, say that,
in the neighborhood of a poiny), the elastic solution is of the form

u(z) = r®v(0) 4+ u(x),
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where(r, §) denotes the polar coordinates with pelg 0 < o < 1 anda € W>2(Q2). The
restriction ona: ensures the finiteness of the bulk energy and the @t -regularity ofu,
i.e., its singular character, provided tha# 0. The pointz, could be a crack tip, a boundary
point where a change in boundary condition occurs, or a meoesh point of the boundary.
If v =0, thenzg is a regular point, which we can equivalently formalize bitisg o = 1.

We assume henceforth in this remark that the crack can omgndxXromz, with a small
crackT of lengthi. It is formally shown in [31] that the bulk energy

E(u,T):=1/2 Ae(u) - e(u) dzx
o\r

expands as
E(u,T) = BE(u,0) — KI** + o(1**),

where K > 0 — except maybe it = 0 — depends on the shape of the créglon «, but not
on!. Taking that expansion for granted and applying an eveeasing load, we obtain the
following:

(i) If o exhibits a strong singularityy < 1/2), then the crack growth is progressive, with
zero initiation time;

(i) If 2o exhibit a weak singularityc{ > 1/2), then the crack growth is brutal — a crack of
finite length appears at a given time — with a nonzero, finitéiion time;

(iii) If the singularity is a./r-singularity, then the crack growth has a nonzero initiatime,

(iv) If the pointzq is regular, then, either there is no crack growth, or thelcgrowth is
brutal with a nonzero, finite initiation time.

As we see, the behavior of possible cracks changes drégtidapending on the strength
of the singularity at the point under investigation. In pardar, initiation inside a sample is
always brutal. For a numerical confirmation of some of the#idisted above, the reader is
invited to examine the computations presented in Secticgl @b

Note that there is nothing that prevents an extension of éniatonal evolution to higher
dimensions; in dimensiofV, this merely requires to replace the set of test line-cragkest
surface-cracks, that is sefswith H¥~1(I") < co. Similarly, we can extend the variational
evolution to a non-linear setting, provided static equiliin is still expressed as a minimiza-
tion problem. Thus, we propose by analogy a variationaliah in hyperelasticity. Here the
guadratic energy is replaced by an energy densitywhich is now a function of the gradient
of the deformation, still denoted hy Upon setting

E(,T) = o W (V) dz + kHN YT\ 095),

We obtain the following
Variational Evolution 2.5 At each time,



i. One-sided minimality{u(¢), T'(¢)) minimizesE (v, T") among all admissibl¢v, T'), that
is
v=U()ondQ\T
I'oI(t)

ii. Non-dissipativity:£(u(t),T'(t)) is absolutely continuous ihand satisfies

d U
ZE((u(t), (1)) = /Q\m) DW (Vu(t). V(5 (1) de.

Paradoxically, this latter setting is easier to handle raidtically, as will be demonstrated
in the next section. The main reason is that it is more comrerd view the crack sets as the
loci of the possible jumps of the displacement and/or de&tion fields. But then, the natural
functional space from the variational standpoint is a sabepf the space af € L' (Q; RY)
with eitherVu, ore(u) that are bounded Radon measures. It so happens that the &pave,
BV (; RY), is much better known than is symmetrized countergaf(Q; R™).

3 Towardsexistence: timediscretization

Here, we perform a time discretization of the variationadlation. This, we do for two rea-

sons: first, because it is hopefully a way to attain existéocthe time-continuous evolution,

as the time step goes tpthen, because it is what any numerical scheme will end upgdoi
Considerl,, := {t§, ¢}, ..., t},n } With 0 = t§ < ¢, ..., < 8,y :== T (k(n) /5 oo and

Ay = max{ty , — 17} {_‘ 0) a nested sequence of times and defiife ..., U}/, to be a
discretization of the "load”. We adopt as discrete evolutize following scheme:
Variational Evolution 3.1 Settingl'™, = (), the pairu, I'?" minimizes£ (-, -) among all
(v,T") such that
v=U" :=U@()onoQ\T
{ rory,

As the discretization stefd,, \, 0, we clearly (formally) recover itemof the variational
evolutions 2.2 or 2.5; more surprisingly, itethis also recovered: this will be discussed in
greater details below.

The discrete variational evolution 3.1 is meaninglessessiits existence is established.
This is a long story in itself, with intimate connectionshe fproblem of image segmentation,
and, specifically, to D. MMFORD & J. SHAH’s approach to image segmentation [32]. For
our purpose, it is enough to distinguish two sets of results.

Whenevew is scalar-valued — the generalization to possibly higheedisions of the anti-
plane shear setting —, the most fruitful approach appeasieak formulation of the discrete

variational evolution. Introduce
i—1

Iy = U S(uy)

J=0

and

EMv) = /QW(Vv) dz +kHN ' (S(v) \ (T, U09Q3)), (3.1)
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wherew is any function inSBV (). Recall thatSBV () is the subset oBV () of all
elements € L!(Q), such that their distributional derivativev reads as

Dv = VoY + (vt — v )wHN T S(v).

In the formula aboveVw is the density of the Lebesgue part of the meadite S(v) is
the complement of the Lebesgue pointsupfa rectifiable set with normal(x) at a point
x € S(v), across which jumps fromv=(z) to v+ (z) (see e.g. [4]). The discrete variational
evolution becomes

Variational Evolution 3.2 «} minimizesE* among allv € SBV(Q) such thatv =
U onRY \ Q.
Then, the discrete crack at tim@ isI'? :=T'? ; U.S(ul).

Thanks to a compactness theorem of LMBROSI0 [2], the discrete variational evolution
3.2 is easily shown to have a (possible non unique) solugéibleast provided that the energy
density is convex witlp-growth for somel < p < o, thatis

a(|FIP — 1) < W(F) < b(|F]” + 1), F € RY, (3.2)
for somel < a < b < 00, and also that the boundary data are smooth enough, that is
Ul e L=(Q) nWhP(RN).

Remark 3.3 Wheneverm is vector-valued, but the energy is still a function\dd — the
hyperelastic case — existence is more involved. The trumgeif hyperelasticity, with the
well thought of constraint thd’ (F) ' oo, wheneverlet F' \, 07, is beyond the current
scope of the analysis. Even whéii satisfies (3.2), together with the usual quasiconvexity
assumptions, existence is complicated in particular bylablke of supremum bound on It
is necessary to introduce a certain class of surface andfy lbads, so as to ensure com-
pactness of the minimizing sequences. In [18], QLIMASO, R. TOADER and | present
a detailed analysis of the general "hyperelastic” case (ansgle existence of a variational
evolution of the type 2.5).

Unfortunately, the weak formulation fails when dealingwstymmetrized gradients, be-
cause the right space beconf&8D(Q) — the space of € L'(€2; RY) with e(v) a bounded
Radon measure — and the necessary estimates for compdfetihg8ls The weak bounded
variation setting is no longer appropriate. As of yet, théyaase where this obstacle has
been circumvented is that of plane elasticity (N=2); seé.[TBe method consists in proving
existence for the strong discrete variational evolutiodX3This in turn requires a restrictive
assumption on the possible cradksnamely that their number of connected components re-
main a priori bounded. The deciding result is then Golakeotem (see e.g. [15]), which
states that a sequence of connected compact sB$with uniformly bounded length admits
a subsequence that converges in the sense of the Hausdbafick to a connected compact
set with length less than or at most equal to the liminf of #regths.

The case of three dimensional linear elasticity is compjetpen at present.

In any case, we interpolate the discrete solutighd} at timet; as follows:



u(t) == ul

() := re te [t?,t;ﬂrl),

un(t):=Up
noting that, in view of the definition of,,, U"(t) = U(t), t € I := |J,, In, @s soon as is
large enough.

Now that we have at our disposal the time discrete variatievaution, it remains to pass

to the limit in the time step\,,, hoping to recover some version of the variational evohutio
(2.2), resp. (2.5), in the limit. To convince the reader @& tton-trivial character of such an
undertaking, | illustrate the kind of pathologies that @batise on a simple, yet instructive,
example. It is that of the Neumann sieve [33]. | recall thateaufdann sieve situation occurs
when boundaries close up at a critical speed that createselsaof non—zero capacity in the
domain. For example, consid@r= (-1, 1)? and assume, in a linear antiplane shear setting,
that, at a given time, the cradk, is a "sieve” of the form

Po={Op):u¢ |J Gp/n—ep tp/n+ep ™)}
p=0,...,n
for a boundary load
u =0, resp.l,on{z = —1}, resp.{z = 1}. (3.3)
Then the displacement, satisfies
—Au, =00NnQ, := (=1,1)?\ T,
with

ouy,

u=0 on 9, N{r=-1}
u=1 on 9Q,N{x=1}

It can then be shown that, — u strongly inL?(2), with Q = [(—=1,0) U (0,1)] x (=1,1)
andu the solution to

—Au =00nqQ,
with 5
u
a 0 on n{y==1}
u = 0 on {-1}x(-1,1)
u = 1 on {1}x (-
ou
5, = Huloon {0} x (-

wherep[u] > 0. Henceu,, does not converge to the solution

{Oon( 1,0) x (—1,1)
~ 1 1 on(0,1) x (—=1,1)
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of the Neumann problem di \ T', with " = {0} x (-1, 1).

The Neumann sieve must be prevented, if one strives to readwdttle model in the limit
of the discretization. A possible path consists in proilgicracks with too many connected
components, exactly as in the case of planar linearizeti@tgsThen, one-sided minimality
in the sense of item in the variational evolution (2.2) is obtained, thanks toaaaptation
of a result of A. GiAMBOLLE &F. DoVERI [16] and of D. BUCUR & N. VARCHON [13],
which states— in particular — that, § is a Lipschitz two dimensional domain agd”},,
is a uniformly bounded in length sequence of compact coedests that converges for the
Hausdorff distance td', the solution to a Neumann problem of the form

—Av, +v, = fin Q\I™
vy, B n
B = 0 ong[Q\I"],

is such thaw,,, Vuv,, — v, Vo, strongly inL?(€2), with v solution to

—Av+v = wvin  Q\T
ov
% = 00n9[Q\T],

Deriving that adaptation, G. 2 MAsSO & R. TOADER prove in [19] the existence of a
solution to the variational evolution 2.@nder the restriction that the cracks have an a priori
set number of connected componemsturn, A. CHAMBOLLE in [15] proves an analogous
result for plane elasticity, where, as noted before, cormtkess seems to be the only viable
assumption.

In fact, the Neumann sieve phenomenon cannot occur bedausdarge enoughy,,, I';,
is not a minimizer for

1

5@Jﬁ:§éwnmﬁm+uumm3rw

with the boundary conditions (3.3). Indeed, by lower seminuity,

1
liminf €(uy,, Ty) > —/ |Vul|? dz + 1,
n 2 Q\

with « defined above. Now; has non zero bulk energgyfﬂ\F |Vul|? dx, saya, so that, for
n large enough,

gmmngz1+g.

But&(w,T') = 1, a strictly smaller value, whil€ > T',,; hence, fom large enough, it is better
to close the holes of the sieve and to take the crack tB.b€&his remark is what prompted
C.J. LarseNand | to hope for a stability result for one-sided minimalityder refinement of
the time step.

| now wish to give the reader a rough idea of the challenge iadl lrathe antiplane shear
case (that where is scalar-valued). Recalling the one-sided minimality.ib, 3" (¢) satisfies
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in particular
% [ W) iz g% [ W(T0) dat HYHS0) (S (0) Uo). (34

We say that." (¢) is aminimizer for its own jump sett is easily shown that, provided that

U € L>=(0,T; L(RN)) n w0, T; Wh?(RY)), (3.5)
then
u™(t) is boundedin L*(Q)
Vu™ (t) is boundedin LP(Q; RY)

HN=Y(S(u™(t)) isboundedin R,

from which it is deduced, thanks to Ambrosio’s compactnésotem, that a (a prioti-
dependent) subsequenceuf(t) converges irt BV to someu(t), by which | mean that

u”(t) 2 u(t), weak-*in L>(Q)
Vu'(t) 2 Vu(t), weak inL?(Q; RY) (3.6)
HN (S (u(t)) < liminf, HN=1(S(u™(t))).

If one-sided minimality is to be obtained in the limit, thef¥) should in particular be a
minimizer for its own jump set. In view of (3.6), which imp$iehe lower semi-continuity of
the left hand side of (3.4) by a result of L.MBROSI0 [3], the result would follow easily,
provided that

limsup P (5(0) \ S(u”(1))) < HY (S () \ S(u(v)

That such might not be the case is easily demonstrated bydesitegy v such thatS(v) C
S(u(t)), while u™(t) is such thatS(u™(t)) N S(u(t)) = O (which would surely happen if
S(u™) C K, with K, N K = () and the Hausdorff distance frofd,, to K goes to0); we
would then get{~V~1(S(v)) = 0!

This indicates that one cannot hope to prove stability of-sided minimality without
modification of the test fields. This is in essence what our jump transfer theorem [21],
Section 2, does. Specifically, that theorem says thaty'for; satisfying (3.6), and any €
SBV (Q), there exists a sequenct € SBV (Q2), with

v™(t) = v, strongly inL'(Q)
Vo™ % Vu, strongly inL?(Q; RY)
HNH(S(0) \ S(u(t)) < limsup, HY=1(S(v"™) \ S(u”(1))).

Stability of one-sided minimality, which is easily deriyefbr all ¢'s in I, with the
help of the jump transfer theorem, is but the first hurdle teroume. The solutiom(t),
L'(t) == Ugs<tser.y S(u(s)), has to be extended to dlf in [0, 7). This can be done fairly
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simply in the scalar valued case(see [21], Section 3.2h&cdmes much more delicate in the
vectorial case because the minimizers[gfiv (Vv) dx over{v € SBV(Q) : S(v) C I'},
for I, HV ~1-rectifiable set, are not unique . The argument necessttatdstroduction of a
weak notion of set convergence, thatodfconvergence ([18], Section 4.1), which | will not
describe here.

Then, one should prove non-dissipativity, that is:

N-1 = t U a—U S xds
/QW(Vu(t)) dx + kH (I‘(t))_/o /QDW(V (1)-V(7 (5)) dad

+/ W(Vu(0)) dz + kHN~1(T(0)).
Q

Once again, this is not such an easy task. The upper inegisatibtained from an analogous
inequality for the discrete variational evolution. The kegult (especially in the vector-valued
case) is that

DW (Vu™(t)) — DW (Vu(t)), weakly inL? (Q; RN ™),

which allows to pass to the limit in the upper inequality ([E&ction 4.3).

The lower inequality is a corollary of one-sided minimality «(t), but it requires, either
the ¢-continuity of DW (Vu(t)) in LP (essentially true in the scalar case) [21], or a subtle
approximation result of Lebesgue integrals by appropRagenann sums ([18] Section 4.4).

Finally, convergence (for a subsequence) of the discréksdmergy to the continuous bulk
energy, and of the discrete surface energy to the continsuotsce energy is easily obtained.

Existence of a (weak) variational evolution for t§&V -version of 2.2 or 2.5 is now as-
certained. Remark that, in generalf) andI'(¢) have no special properties in time; in other
words, it is not even clear that they are measurable mapsdlaglynit is the sum of the bulk
and surface energy that is absolutely continuous in timett®ibulk energy can suddenly
jump down, and the crack "length” jump up, at a given time.sTikithe occurrence of brutal
cracking, an instantaneous extension of the crack; thiscpéar incident is happily encom-
passed in the model that we champion, in striking contrastitat would happen within the
perimeter of Griffith's model.

Summarizing, existence of a variational evolution is gnggad in the following cases:

e antiplane shear, linear of non-linear, subjected to a tiamying hard device [21], [18];

e hyperelasticity, without the determinant condition (nanfre indifference), subjected
to a time-varying hard device and to appropriate body anslidiace forces (no linear
loads!)[18];

e two-dimensional linearized elasticity, , subjected tonaetivarying hard device and with
the "connectedness” restriction [15].

| emphasize that, if no "connectedness” restriction aredsegl on the test cracks, then
the above outlined argument only shows existence of a wegktizaal evolution; it has
yet to be proved thal'(¢) is a compact set, so that the classical elasticity problenitk w
we WP(Q\I(t); R™) - is well posed o2 \ T'(¢). This would require a regularity result

ala E. DE GIORGI, M. CARRIERO, A. LEACI [20], that is thatH{"V ! (F(t)\l“(t)) =0,a
formidable task in the current setting.
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4 Further results

In this section, we list most of the available theoreticalites that have been derived in the past
few years with the help of the variational evolution. The rpmations results are especially
noteworthy, because they are at the root of the availableeniocai methods. The numerical
aspects of the variational evolution are varied and fasicigal would do them injustice, if |
tried to squeeze a short numerical section in this paper anefér to refer the reader to [12]
for a detailed account of some of those. | will merely presentillustrative computations in
Section 6 below.

A first class of results attempts to derive Griffith’s claasicriterion (itemi: in Griffith’s
model) from the variational evolution, assuming the craakhpo be smooth. This is first
achieved in the two-dimensional "connected” case in [18§t®n 8, then, for a flexural plate
model, in [1], Section 7. Note that, to the best of my knowksdtpe latter result is new; it
gives an expression for the energy release rate in termgafaéfficients of the singular part
of the displacement field, solution to a fourth order prohlem

In a different direction, A. GACOMINI & M. PONSIGLIONE investigate the interaction
between homogenization and fracture evolution. &~dependent bulk energies with uniform
p-growth, ands-dependent surface energies of the brittle type, that isggeof the form
f5(v) k¢ (z,v)dHN 1, with a uniform bound from above and below on tkés, they prove
that the variational evolution, for a given "tends to” that of the brittle material that would
have for bulk energy the homogenized bulk energy, and fdasarenergy, the homogenized
surface energy. There is thus no interplay between hompaggom and the variational crack
evolution.

Consider an elastic material with a cohesive — a la Bar¢tylae — surface energy , that
is an energy of the form

/S( )cp([v]) dHN 7L 0 p(0) =0/ @(o0) = 1 0n]0, +00], ¢ concavey' (0) < +oo.
(4.2

Seta := ¢'(0); theny(s) < asforall s € [0, +o0]. Itis folklore in the fracture community
that cohesive surface energies give rise to brittle behasdhe size of the sample becomes
large. This issue is addressed by AIAGOMINI in [25]. The consideration of cohesive type
surface energies introduces an additional difficulty. bajehe functional

1
9o de + / ([0l dHN Y,
2 Jao S(0)\0Qs

with ¢ as above, is not lower semi-continuous 88V (2). It needs to be relaxed [10];
its lower semi-continuous envelope is the following fuontl, defined this time on all of
BV (Q):
[ dos [ pul) an¥ + alDeal, @.2)
Q S(v)\ons

whereD_ v denotes the Cantor part of the measimeand

() == { 12l <a

sa® +a(|t] —a), [t| > a.
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In the case of crack evolution, this needs to be modified, 40 ascount for irreversibility:
if, at timet], the crack set i , then we consider

1
inf { 1 / Vol da + / S]]V gt ) dHN Y
2 Jo (S(v)UTT_ \OQS

gi" = Wil vV gy, Ti =10l US(uf).

and set

First, it is not obvious that the relaxation process and stepping commute; second, even if
it is so, recovering the variational evolution for the radxXunctional inBV (Q2) from a time
discretization — currently the only available method — isogen problem. A. GACOMINI
considers a sequence of homothetically increasing domdinsvith adequate scaling of the
boundary displacements”(t,z) := hzU(t,z/h), then a sequence of discrete times that
tends ta0 as the size parametgrincreases. Rescaling the problem backitde shows that
this double approximation gives rise, as” o to the variational evolution 2.2 discussed in
Section 3. Folklore becomes fact.

The most numerous results concern various approximatibtigeovariational evolutions
2.2. Their shared starting point is the approximation of Mhemford-Shah functional for
image segmentation, a huge field in itself. Adaptation okéhto the problem at hand has
been circumscribed to two methods. The first derives frommthek of L. AMBROSIO &
TORTORELLI[5], [6]. The idea is to approximate in the sens&'efonvergence the functional

1/2/Q|vu|2 de +HY1(S(v))

by a two-field functional

/ (%(w2 +0(£))|Vv|? da + ¢|Vw|? + %E(w - 1)2) de, 0<w<1, (4.3)
Q

the main point being that minimizets§, w* for the second functional — upon adding suitable
zeroth order terms — will converge to minimizers for the finse. Specifically,

. 1
v® — u, strongly inL?(Q2), &|Vw®|? + 4—(w5 —1)? = HV~1|S(u), weak-* as measures
g

wherew is a minimizer for the first functional. The crack set will insence be the set where

we does not converge tb. This idea is used and implemented for the discrete vanatio

evolution by B. BDURDIN [12]; serious numerical issues have to be overcome for aesgec

ful implementation of such an algorithm. In [26], A.I&OMINI proves the existence of a

variational evolution for the approximation — at fixed- and shows that the resulting time-

parameterized minimizing fields converge to a variatiomalion of the (weak) type 2.2.
The second method operates directly at the finite elemeat. |&he idea is to look at a

triangulation7; of 2, where each triangle is roughly of sizeThen, two options are available.
The first consists in refining the triangulation as follows:each side of the triangles @f,

a pointis chosen, so that its distance to the two verticesatfdide is betweedr and(1—a)e,

0 < a < 1/2. Then, one considers piecewise-affine fields with possibke-discontinuities
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on each element of the nested new triangulation obtainedibing together all such points.
This is the road traveled by A. IGCOMINI & M. PONSIGLIONE in [27]. At fixed a, ¢ the
minimization is carried out on the resulting triangulatetrdiscrete times (parameterized by
0), then all parametersé; ¢, a — are made to tend t®, and the (weak) variational evolution
2.2 isrecovered, at least in the antiplane shear case.

In the second formulation, a concave, non-decreasingjragnis, non-negative function
f with slopel att = 0 and limit 1 att = oo is introduced. The method consists, for a fixed
triangulationZ,, in using an approximation of the Mumford-Shah functiorfahe form

Ge(v,T) = Z TN Q|1 /hy f(hr|Vor|?),
TeT:

hr being the smallest side-length'BfandVur being the constant value of the gradientof
with « continuous and affine on eaghe 7:. This approximation is shown by B.&JRDIN
& A. CHAMBOLLE in [11] to I"-converge to the Mumford-Shah functional, @3\, 0; the
resulting numerical algorithm compares favorably to theddd on the Ambrosio-Tortorelli
approximation, notably because it is much faster. In theedrof brittle fracture, a variant of
this is proposed by M. HGRIin [34].

The above mentioned results span, in a nutshell, the rarmeadéble results related to the
variational evolution presented in Section 3 and demotesiteiscope and numerical adapt-
ability.

5 A defect and itsremedies

The main defect of the variational evolution — its generafiility to handle soft devices — has
been alluded to several times already. This is obvious alethed of the discrete variational
evolution. Indeed, the enerdi(v, ") must be modified, so as to accomodate the work done
by the loads, which | synthetically denote By, v). Now, whenevelL is linear inv and there

is a pairv, I for which [, . W (V) dz = 0, then

E(w,T) {. —00.

This will be the case for example when constant surface laaglsipplied on a pafl;2 of
the boundary.

Consequently, there is no minimum pair fr

In the framework of "finite elasticity” (see Remark 3.3 abpuéis issue can be circum-
vented, at the expense of the exclusion of linear loads ([38ttion 3). The loads should
be such, that the accompanying minimizers&@(v,I") (see 3.1) are uniformly bounded in
someL?-space, withl < ¢ < oo. To that effect, they are assumed to satisfy a coercivity
hypothesis of the form:

—L(t,v) = afjollt, ~ B.

From a mechanical viewpoint, this ensures that, even if thidyIsplits into several compo-
nents, those all remain at finite distance from each othecoOfse, such a "trick” would be
nonsensical in the linearized context.
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It is then tempting to lay the blame on global minimizatidre tornerstone of our model.
A criterion of local minimality (meta-stability) would seemore appropriate. It immedi-
ately begs the question of what the measure of locality shbej which distance should one
adopt? A natural distance could be that induced byBfenorm. If doing so, then the one-
dimensional results in [17] suggest that the cure is nohgtemough, because elastic solutions
are shown to remain local minimizers, independently of taling level: initiation does not
occur. A recent investigation by A. KAMBOLLE, A. GIACOMINI & M. PONSIGLIONE
establishes a similar result in linearized antiplane sh@arided that the elastic solution re-
mains smooth enough, that is essentially when the singaldrgp that solution near a point
of singularity grows likdz|, with o > 1/2.

Replacing global stability by meta-stability brings us ewtoser to the original Griffith’s
model and indeed, as emphasized before, the absence ofinitaton is generic in that
model. Consequently, if crack initiation is to be retainea essential ingredient of a rational
theory for quasistatic brittle fracture, then Griffith’s del has to be further modified. But the
elastic (bulk) part of the energy cannot be challenged. T8uifith’'s surface energy is the
weak link.

In the very simple one-dimensional setting, we show in [h@} bne should simultaneously
abandon global stability in favor of meta-stability, andff@h’s surface energy in favor of a
cohesive type energy. Then, a yield stress can be evidencesbdt devices behave like hard
devices. The required tools for a similar analysis in din@msgreater than one are lacking
at present.

6 Numerical implementation: two examples

| present in this final section the results of two numericahpatations that illustrate the
practical predictive power of the variational evolution.

The first computation, performed by B.OBRDIN and already presented in [12], is based
on the Ambrosio-Tortorelli approximation detailed in Sent4.

A square elastic matrix is reinforced by a perfectly bondgdircircular fiber: this is a
plane stress problem. A uniform upwardly directed disptaeet fieldd, represented by a
black area in the following figures, is imposed on the uppde sif the square; the remaining
sides are traction-free.

The crack is represented by the red lines. The smearing sétlites is due to the approx-
imation, since the colors indicate level sets for the adddli variablew in the approximation
(4.3); the red correspondstoclose to0, {w = 0} being the crack site.

As long asd < .2, the matrix remains purely elastic. At~ .2, a crack of finite length
brutally appears slightly above the north pole of the inicingfigure 1): it is not a boundary
crack. The brutal character of the growth is conform to trseilts in [22], Section 4, where
brutal crack growth with a finite initiation time is predidté the absence of singular points
for the purely elastic solution. Whehvaries between2 and.32, the crack progressively
grows in the matrix (figure 2).

At § ~ .32, the right hand-side of the matrix is brutally cut (figure 8jich also agrees
with the results in [22], Section 4. Whérvaries betweer82 and.37, the left part of the crack
progressively grows (figure 4). Finally, &t~ .37, the crack brutally severs the remaining
filament of uncracked material (figure 5) and the sample isispb two parts.
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Fig.1 § ~ .2: Acrack of finite length appears Fig. 2 The crack extends smoothly on both
slightly above the interface. sides; the slight asymmetry is a byproduct of
the corresponding asymmetry of the mesh.

Fig. 3 § ~ .32: The crack brutally grows on  Fig. 4 The crack grows smoothly on the re-
one side; the choice of the side is a byproduct maining side.
of the asymmetry of the mesh.

Remark 6.1 It is checked in [12] that Griffith’s criterion (iter in Griffith’'s model of
Section 3) is verified during the progressive phases of thkigon.

Remark 6.2 If the symmetry breaking direction is purely numerical, tlaeefully planned
asymmetry of the underlying mesh guarantees the realitycofigputed lateral symmetry.
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Fig. 5 § ~ .37: The crack splits the sample,
leading to its failure.

| think it is fairly clear that the complexity of the computéehavior is well beyond the
scope and analytical power of classical brittle fracture nated in [12], the qualitative agree-
ment between our results and experimental observationstis sptisfactory (see [29]).

The second example is a traction experiment on a circulaposite cylindrical shaft per-
formed by F. BLTERYST in [9] and reported in [23]. The inner shaft is perfectly beddo
the outer hollow cylinder. The inner and outer material @eheelastic, but the inner shaft is
assumed unbreakable; the fracture toughness, is taken to be infinite there. A namoally
increasing displacement field is applied at each point oétitesections.

5 & B
T F N

Fig. 6 Periodically distributed transverse cracks brutally @ppe

Once again, the computation is based on Ambrosio-Tortsrapproximation, which ex-
plains the numerical smearing of the crack. Figure 6 showdntant at which a alternating
set of periodically distributed cracks transverse craokislenly appears. Once again, this isin
agreement with our theoretical predictions, yet such dtresuld not be attained by resorting
to Griffith’'s model. Experimental observations [24] quatitely validate the computation.

Acknowledgements | wish to acknowledge the people who, throughout the yearge leollaborated
in developing the model as it stands today: B. Bourdin, A.r@belle, G. Dal Maso, C.J. Larsen, J.J.
Marigo, my long term collaborator, and R. Toader.
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