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This article presents an overview of the current state of thevariational theory of quasistatic
brittle fracture. It is shown that that theory, while departing only slightly from the classical
theory of Griffith, alleviates many of the obstacles usuallyassociated with quasistatic crack
growth. The underlying mathematics are outlined, the various available results sketched, and
the drawbacks discussed. Two numerical computations, wellbeyond the scope of the classical
theory, are presented.

1 Introduction

The basic concepts of brittle fracture, established by A. GRIFFITH in the 1920’s [28] and
refined by various brilliant followers in his footstep, are very much entrenched in the collective
psyche of the contemporary mechanician. Yet, the theory hasbeen and continues to be plagued
by major defects, most notably its inability to predict crack initiation, to follow the crack path,
or to decide if the crack evolution is ”stable”.

As a result, a host of ad hoc remedies have been proposed, withunequal success. But,
more often than not, those are viewed as additional ingredients, which should be appealed to
whenever the mechanical environment becomes hostile. It isat times as if the crack had to
carry its own toolbox.

This, in our opinion, runs contrary to the seminal tenet of continuum mechanics: scarcity
of ingredients, abundance of results. In an effort to abide by this principle, J.J. MARIGO and
I have proposed an economical theory that departs as little as possible from that elaborated by
A. GRIFFITH. In doing so, we were inspired on the one hand by our own work ondamage
[23], but also very much guided by the impressive work on image segmentation initiated by
D. MUMFORD & J. SHAH [32] and beautifully formalized and expanded by E. DE GIORGI

and the school he created. E. DE GIORGI created the tools without which the variational
formulation could not exist.

The model we propose is variational and only applies to quasistatic evolution. It does
remove many of the obstacles associated to the classical theory; it is indeed very close in
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spirit to the original model proposed by A. GRIFFITH. But, of course, there is a price to pay:
because it is based on global minimization, it poorly handles soft devices, as will be evidenced
in the fifth section. This can be somewhat remedied, both within the model, and by weakening
the minimization process, as will be further detailed in that section. But there too, there is a
mathematical price to pay because local minimality (meta-stability) is a delicate topic, for
which few tools are available.

Thus, I do not contend that we have the final word on quasistatic crack growth, but merely
that a bit of flexibility goes a long way in what we deem to be a reasonable path that runs right
along the field of classical fracture mechanics.

In these notes, I outline the model – increasingly referred to as the variational theory of
brittle fracture – from its inception to its current status.To this effect, a first section is devoted
to a review the classical model of brittle fracture, as formulated throughout the last eighty
years by A. GRIFFITH [28], but also by e.g. G.I. BARENBLATT [7], G.R. IRWIN, [30] ...
The reader might however encounter some difficulties, should she attempt to locate a similar
presentation in the existing literature. A good reference in that direction is the book by H.D.
BUI [14]. I then show how the time dependent model that J.J. MARIGO and I have proposed
in [22] departs from that theory.

A second section discusses the time-discretization of thatmodel, a natural step from the
standpoint of any computations. I then indicate how and whenthe time continuous model can
be seen as a limit of that discretization as the time step becomes smaller and smaller. I do not
present complete proofs, because this is not intended as a mathematical paper, but rather try
to point out the kind of obstacles one is confronted with whenattempting a rigorous analysis.
The provided references should satisfy the mathematicallyinclined reader.

A third section presents a near exhaustive compendium of available theoretical results,
which can still be done at this stage, but may prove impossible, should the variational theory
become more popular. A host of known facts or folklore can be recovered, clearly advocating
the relevance of the model.

The variational theory is far from picture perfect, and the fourth section addresses the main
unsolved issue and suggests possible remedies. The methodsare still at an embryonic stage.

Finally, the last section develops two numerical computations. The first was presented in
[12] and the second in [23]. The first computation follows a cack from its initiation to the
ultimate failure of the sample.The variety of pathologies evidenced throughout the growth of
the crack positions the first example far beyond the reach of the classical theory. Yet, the vari-
ational theory yields results that are, at the least, in qualitative agreement with the experiment.
The second computation is a static one, yet it demonstrates that the variational framework
can capture the occurrence of multiple cracks without importing any new ingredients into the
theory.

2 Classical brittle fracture versus variational brittle fracture

As is customary in fracture mechanics, I develop the model ina two-dimensional setting, then
generalize it to the spatial case.

Consider a linearly elastic material occupying a domainΩ with elasticityA, so that its
constitutive behavior is described by the following stress-strain law:

σ(x) = Ae(u)(x), with e(u) := 1/2(∇u+ ∇ut).
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The possible defects in that material at timet are assumed to be a crackγ(t), which follows
a preset crack pathΓ ⊃ γ(t). The preset path may go to the boundary ofΩ, so as to allow
debonding; thusΓ ⊂ Ω. I further assume thatγ(t) is connected, so that it can be seen as
a curve parameterized by its arclengthl(t), that is that the knowledge of the crack length
amounts to that of the crack itself. Equivalently, the knowledge of the crack tip is sufficient to
describe the whole crack site. In other words,γ(t) is in fact a function ofl(t),

γ(t) := Γ(l(t)).

Throughout this section, I assume that the only ”loads” are time-dependent boundary dis-
placementsU(t, x) on a part∂Ωd of ∂Ω; one speaks of hard devices. This seemingly innocu-
ous assumption is in fact fundamental, and the consideration of body or surface loads remains
problematic in the proposed framework as noted at the onset of Section 5 below; see however
the comments thereafter, which suggest a possible resolution of the dilemma posed by force
loads.

It is actually simpler to view the fieldU(t) as the trace on∂Ωd of a field, still denoted by
U(t), defined this time on all ofIR2. We further assume thatU(t) possesses all necessary
smoothness int.

Now, for a given crack lengthl (at timet), the displacement fieldu(l, t) should be in static
equilibrium with the loads at that time (this is the meaning of quasistatic). As is classical in
linearized elasticity, this can be seen as a minimality statement for the elastic energy among
kinematically admissible displacement fields. Thus,u(l, t) minimizes

E(v, l) :=

∫

Ω\Γ(l)

1/2Ae(v) · e(v)dx, (2.1)

among allv’s such thatv = U(t) on∂Ωd \ Γ(l).
Of course, this is of no value as long as the actual crack length l(t) is not determined.

Assuming thatE is smooth enough inl, one computes the energy release rate

G(l, t) = −∂E
∂l

(u(l, t), l).

The evolution law forl(t) suggested by A. GRIFFITH is as follows:

i.
dl

dt
(t) ≥ 0 (the crack can only grow);

ii. G(l(t), t) ≤ k (k is the critical energy release rate);

iii.
dl

dt
(t)(G(l(t), t) − k) = 0 (the crack will not grow, unless the energy release rate is

critical).

From now on, ifl(t) satisfies the evolution law, I setu(t) := u(l(t), t), the minimizer for (2.1)
at l = l(t).

At this point, all classical ingredients of Griffith’s theory of brittle fracture have been
introduced. I will comment at a later stage the introductionproposed by G.I. BARENBLATT

of a cohesive surface energy. In any case, from now onward, byGriffith’s model, I mean
quasistatic equilibrium (2.1), together with itemsi− iii of the evolution law above.
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Remark 2.1 As is well known, Griffith’s criterion, in spite of its longevity, is plagued by
at least three major defects listed and commented below.

First, the crack path must be preset, since a single equationcannot possibly predict the
crack tip path.

Then, crack initiation is impossible if e.g.l(0) =
∂E

∂l
(·, 0) = 0. For example, a pre–

cracked half–planex1 > 0 , with a pre–crack of lengthl orthogonal to the boundary atx2 = 0
is considered; atx2 = ±∞, a mode I load , that is an increasing vertical normal stress, of
opposite sign on each side ofx2 = 0 and of magnitudet is applied. Then, it can be shown
that the crack will increase whent is of the order of1/

√
l (see [30]), so that, asl ց 0+, the

magnitude of the load required to further advance the crack becomes infinite. In all fairness,
this second defect is viewed as an asset by some who argue in favor of the introduction of an
initial defect; our own bias is contrary because it is our opinion that one should first explore
all ramifications of a model before adding extraneous complements to that model.

Last, smooth crack growth is impossible if e.g.G(l, t) րt at l = l(t), a situation which
can arise in many examples (see e.g. [22], Section 4).

Various remedies have been proposed on a case by case basis, but there is, to my knowl-
edge, no unified way of curing all three defects at once, besides that proposed hereafter.

I submit that Griffith’s model can be rewritten in a more palatable manner as detailed
below. Define

E(v, l) := E(v, l) + kl.

First, quasistatic equilibrium, together with itemii of the evolution law is easily seen, through
elementary variations, to be equivalent to

DE(u(t), l(t)).

(

v − u(t)
l − l(t)

)

≥ 0, v = U(t) on∂Ωd \ Γ(l), l ≥ l(t), (2.2)

whereDE is the Fréchet differential – assumed to exist – ofE(v, l) with respect tov, l. In
turn, itemiii of the evolution law reads as

d

dt
[E(u(t), l(t))] =

∫

Ω\Γ(t)

Ae(u(t)).e(
∂U

∂t
(t)) dx. (2.3)

(Recall thatU(t) has been defined on all ofIR2.) The balance law (2.3) may be viewed as
equivalent to Clausius-Duhem inequality, provided that the dissipation att is identified with
kl(t).

In conclusion, our equivalent definition ofGriffith’s model is as follows: any evolution
u(t), l(t) that satisfies (2.2),(2.3), together with the irreversiblegrowth condition on the length
of the crack(item i in the evolution law).

Now, note that (2.2) is a first order optimality condition foru(t), l(t) to be a one-sided
local minimizer forE(·, ·) among alll ≥ l(t), v = U(t) on Ω \ Γ(l). A first and slight
departure fromGriffith’s modelwould be to assume local minimality in lieu of (2.2). Unfor-
tunately, such a modified stability criterion raises several issues: firstly, the notion of locality
is distance dependent and there is no guiding principle thatdictates the proper choice of that
distance; then, local minimizers of non–convex functionals are poorly understood in dimen-
sions greater than 1. See however [17] for a one-dimensionalstudy of local minimizers and
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also Subsection 5 below. Consequently, we arbitrarily strengthen the postulate by requiring
that local minimizers actually beglobalminimizers. In doing so, we can significantly enlarge
the set of admissible cracks. In fact, we candrop the preset path assumptionaltogether, since
global minimization will act as a drastic selection criterion. We define, for all compact setsΓ
with finite Hausdorff measure , the total energy

E(v,Γ) :=

∫

Ω\Γ

1/2Ae(v) · e(v)dx+ kH1(Γ \ ∂Ωc
d);

note that there is no surface energy paid for the part of the crack that lives on the traction free
part of the boundary∂Ωc

d := ∂Ω \ ∂Ωd, as it should be. We are thus led to the following

Variational Evolution 2.2 At each timet,

i. One-sided minimality:(u(t),Γ(t)) minimizesE(v,Γ) among all admissible(v,Γ), that
is

{

v = U(t) on∂Ωd \ Γ
Γ ⊃ Γ(t)

ii. Non-dissipativity:E(u(t),Γ(t)) is absolutely continuous int and satisfies

d

dt
E((u(t),Γ(t)) =

∫

Ω\Γ(t)

Ae(u(t)).e(
∂U

∂t
(t)) dx.

Let me stress again that the variational evolution above – referred to as thestrong varia-
tional evolutionfor the remainder of the paper – only differs from Griffith’s model in that the
necessary first order optimality condition for local minimality (2.2) is replaced by a statement
of global minimality. This makes all the difference!

Our goal is two-fold: a thorough investigation of the consequences of such an evolution on
the one hand, and an existence result that will guarantee existence on the other.

My focus here is the second point and I merely indicate in the remarks below two conse-
quences of the variational evolution, referring the readerto [22] for a detailed study of the
mechanical implications of that evolution.

Remark 2.3 Crack initiation is automatically triggered in finite time,at least for propor-
tional loads, that is for fieldsU(t) of the formtU , U being a fixed displacement field. Indeed,
as long asΓ(t) ≡ ∅,

E(u(t), ∅) = t2E(u(1), ∅) րt ∞,

sinceu(1) 6= 0, henceE(u(1), ∅) 6= 0. But cutting away∂Ωd costs at mostkH1(∂Ωd)
in surface energy, while the associated minimal elastic energy is null. Thus, the competitor
0, ∂Ωd haskH1(∂Ωd) as total energy, definitely less than that ofu(t), ∅ that goes to∞ with
t. This is in striking contrast with Griffith’s model, as already noted in Remark 2.1 above.

Remark 2.4 Singularities, which play a pivotal role in Griffith’s model[30] are also of
paramount importance in the strong variational evolution 2.2, as demonstrated in Section 4.4
of [22]. In a two-dimensional setting with an isotropic material of stiffness tensorA, say that,
in the neighborhood of a pointx0, the elastic solution is of the form

u(x) = rαv(θ) + û(x),
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where(r, θ) denotes the polar coordinates with polex0, 0 < α < 1 andû ∈ W 2,2(Ω). The
restriction onα ensures the finiteness of the bulk energy and the nonW 2,2-regularity ofu,
i.e., its singular character, provided thatv 6= 0. The pointx0 could be a crack tip, a boundary
point where a change in boundary condition occurs, or a non-smooth point of the boundary.
If v ≡ 0, thenx0 is a regular point, which we can equivalently formalize by settingα = 1.

We assume henceforth in this remark that the crack can only extend fromx0 with a small
crackΓ of lengthl. It is formally shown in [31] that the bulk energy

E(u,Γ) := 1/2

∫

Ω\Γ

Ae(u) · e(u) dx

expands as

E(u,Γ) = E(u, ∅) −Kl2α + o(l2α),

whereK > 0 – except maybe ifv ≡ 0 – depends on the shape of the crackΓ, onα, but not
on l. Taking that expansion for granted and applying an ever increasing load, we obtain the
following:

(i) If x0 exhibits a strong singularity (α < 1/2), then the crack growth is progressive, with
zero initiation time;

(ii) If x0 exhibit a weak singularity (α > 1/2), then the crack growth is brutal – a crack of
finite length appears at a given time – with a nonzero, finite initiation time;

(iii) If the singularity is a
√
r-singularity, then the crack growth has a nonzero initiation time,

(iv) If the point x0 is regular, then, either there is no crack growth, or the crack growth is
brutal with a nonzero, finite initiation time.

As we see, the behavior of possible cracks changes drastically, depending on the strength
of the singularity at the point under investigation. In particular, initiation inside a sample is
always brutal. For a numerical confirmation of some of the items listed above, the reader is
invited to examine the computations presented in Section 6 below.

Note that there is nothing that prevents an extension of the variational evolution to higher
dimensions; in dimensionN , this merely requires to replace the set of test line-cracksby test
surface-cracks, that is setsΓ with HN−1(Γ) < ∞. Similarly, we can extend the variational
evolution to a non-linear setting, provided static equilibrium is still expressed as a minimiza-
tion problem. Thus, we propose by analogy a variational evolution in hyperelasticity. Here the
quadratic energy is replaced by an energy densityW , which is now a function of the gradient
of the deformation, still denoted byu. Upon setting

E(v,Γ) :=

∫

Ω\Γ

W (∇u) dx+ kHN−1(Γ \ ∂Ωc
d),

We obtain the following

Variational Evolution 2.5 At each timet,
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i. One-sided minimality:(u(t),Γ(t)) minimizesE(v,Γ) among all admissible(v,Γ), that
is

{

v = U(t) on∂Ω \ Γ
Γ ⊃ Γ(t)

ii. Non-dissipativity:E(u(t),Γ(t)) is absolutely continuous int and satisfies

d

dt
E((u(t),Γ(t)) =

∫

Ω\Γ(t)

DW (∇u(t)).∇(
∂U

∂t
(t)) dx.

Paradoxically, this latter setting is easier to handle mathematically, as will be demonstrated
in the next section. The main reason is that it is more convenient to view the crack sets as the
loci of the possible jumps of the displacement and/or deformation fields. But then, the natural
functional space from the variational standpoint is a subspace of the space ofu ∈ L1(Ω; IRN )
with either∇u, ore(u) that are bounded Radon measures. It so happens that the former space,
BV (Ω; IRN ), is much better known than is symmetrized counterpart,BD(Ω; IRN ).

3 Towards existence: time discretization

Here, we perform a time discretization of the variational evolution. This, we do for two rea-
sons: first, because it is hopefully a way to attain existencefor the time-continuous evolution,
as the time step goes to0; then, because it is what any numerical scheme will end up doing.

ConsiderIn := {tn0 , tn1 , ...., tnk(n)}, with 0 = tn0 ≤ tn1 , ....,≤ tn
k(n) := T (k(n) րn ∞ and

∆n := maxi{tni+1 − tni }
n

ց 0) a nested sequence of times and defineUn
0 , ..., U

n
k(n) to be a

discretization of the ”load”. We adopt as discrete evolution the following scheme:

Variational Evolution 3.1 SettingΓn
−1 = ∅, the pairun

i ,Γ
n
i minimizesE(·, ·) among all

(v,Γ) such that
{

v = Un
i := U(tni ) on∂Ω \ Γ

Γ ⊃ Γn
i−1

.

As the discretization step∆n ց 0, we clearly (formally) recover itemi of the variational
evolutions 2.2 or 2.5; more surprisingly, itemii is also recovered: this will be discussed in
greater details below.

The discrete variational evolution 3.1 is meaningless, unless its existence is established.
This is a long story in itself, with intimate connections to the problem of image segmentation,
and, specifically, to D. MUMFORD & J. SHAH ’s approach to image segmentation [32]. For
our purpose, it is enough to distinguish two sets of results.

Wheneverv is scalar-valued – the generalization to possibly higher dimensions of the anti-
plane shear setting –, the most fruitful approach appeals toa weak formulation of the discrete
variational evolution. Introduce

Γn
i−1 :=

i−1
⋃

j=0

S(uj)

and

En
i (v) :=

∫

Ω

W (∇v) dx+ kHN−1
(

S(v) \
(

Γn
i−1 ∪ ∂Ωc

d

))

, (3.1)
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wherev is any function inSBV (Ω). Recall thatSBV (Ω) is the subset ofBV (Ω) of all
elementsv ∈ L1(Ω), such that their distributional derivativeDv reads as

Dv = ∇vLN + (v+ − v−)νHN−1⌊S(v).

In the formula above,∇v is the density of the Lebesgue part of the measureDv, S(v) is
the complement of the Lebesgue points ofv, a rectifiable set with normalν(x) at a point
x ∈ S(v), across whichv jumps fromv−(x) to v+(x) (see e.g. [4]). The discrete variational
evolution becomes

Variational Evolution 3.2 un
i minimizesEn

i among allv ∈ SBV (Ω) such thatv =

Un
i on IRN \ Ω.
Then, the discrete crack at timetni is Γn

i := Γn
i−1 ∪ S(un

i ).

Thanks to a compactness theorem of L. AMBROSIO [2], the discrete variational evolution
3.2 is easily shown to have a (possible non unique) solution,at least provided that the energy
density is convex withp-growth for some1 < p <∞, that is

a(|F |p − 1) ≤W (F ) ≤ b(|F |p + 1), F ∈ IRN , (3.2)

for some0 < a < b <∞, and also that the boundary data are smooth enough, that is

Un
i ∈ L∞(Ω) ∩W 1,p(IRN ).

Remark 3.3 Wheneverv is vector-valued, but the energy is still a function of∇v – the
hyperelastic case – existence is more involved. The true setting of hyperelasticity, with the
well thought of constraint thatW (F ) ր ∞, wheneverdetF ց 0+, is beyond the current
scope of the analysis. Even whenW satisfies (3.2), together with the usual quasiconvexity
assumptions, existence is complicated in particular by thelack of supremum bound onv. It
is necessary to introduce a certain class of surface and/or body loads, so as to ensure com-
pactness of the minimizing sequences. In [18], G. DAL MASO, R. TOADER and I present
a detailed analysis of the general ”hyperelastic” case (andprove existence of a variational
evolution of the type 2.5).

Unfortunately, the weak formulation fails when dealing with symmetrized gradients, be-
cause the right space becomesSBD(Ω) – the space ofv ∈ L1(Ω; IRN ) with e(v) a bounded
Radon measure – and the necessary estimates for compactnessfail [8]. The weak bounded
variation setting is no longer appropriate. As of yet, the only case where this obstacle has
been circumvented is that of plane elasticity (N=2); see [15]. The method consists in proving
existence for the strong discrete variational evolution (3.1). This in turn requires a restrictive
assumption on the possible cracksΓ, namely that their number of connected components re-
main a priori bounded. The deciding result is then Golab’s theorem (see e.g. [15]), which
states that a sequence of connected compact sets inIR2 with uniformly bounded length admits
a subsequence that converges in the sense of the Hausdorff distance to a connected compact
set with length less than or at most equal to the liminf of the lengths.

The case of three dimensional linear elasticity is completely open at present.
In any case, we interpolate the discrete solutionsun

i ,Γ
n
i at timeti as follows:
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un(t) := un
i

Γn(t) := Γn
i

Un(t) := Un
i

, t ∈ [tni , t
n
i+1),

noting that, in view of the definition ofIn, Un(t) = U(t), t ∈ I∞ :=
⋃

n In, as soon asn is
large enough.

Now that we have at our disposal the time discrete variational evolution, it remains to pass
to the limit in the time step∆n, hoping to recover some version of the variational evolution
(2.2), resp. (2.5), in the limit. To convince the reader of the non-trivial character of such an
undertaking, I illustrate the kind of pathologies that could arise on a simple, yet instructive,
example. It is that of the Neumann sieve [33]. I recall that a Neumann sieve situation occurs
when boundaries close up at a critical speed that creates channels of non–zero capacity in the
domain. For example, considerΩ = (−1, 1)2 and assume, in a linear antiplane shear setting,
that, at a given time, the crackΓn is a ”sieve” of the form

Γn =
{

(0, y) : y /∈
⋃

p=0,...,n

(±p/n− exp−n,±p/n+ exp−n)
}

for a boundary load

u = 0, resp.1, on{x = −1}, resp.{x = 1}. (3.3)

Then the displacementun satisfies

−∆un = 0 onΩn := (−1, 1)2 \ Γn,

with










∂un

∂ν
= 0 on ∂Ωn \ {x = ±1}

u = 0 on ∂Ωn ∩ {x = −1}
u = 1 on ∂Ωn ∩ {x = 1}.

It can then be shown thatun → u strongly inL2(Ω), with Ω = [(−1, 0) ∪ (0, 1)] × (−1, 1)
andu the solution to

−∆u = 0 onΩ,

with


























∂u

∂y
= 0 on ∂Ω ∩ {y = ±1}

u = 0 on {−1} × (−1, 1)
u = 1 on {1} × (−1, 1)
∂u

∂x
= µ[u] on {0} × (−1, 1),

whereµ[u] > 0. Henceun does not converge to the solution

w =

{

0 on (−1, 0) × (−1, 1)
1 on (0, 1) × (−1, 1)
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of the Neumann problem onΩ \ Γ, with Γ = {0} × (−1, 1).
The Neumann sieve must be prevented, if one strives to recover a brittle model in the limit

of the discretization. A possible path consists in prohibiting cracks with too many connected
components, exactly as in the case of planar linearized elasticity. Then, one-sided minimality
in the sense of itemi in the variational evolution (2.2) is obtained, thanks to anadaptation
of a result of A. CHAMBOLLE &F. DOVERI [16] and of D. BUCUR & N. VARCHON [13],
which states– in particular – that, ifΩ is a Lipschitz two dimensional domain and{Γn}n

is a uniformly bounded in length sequence of compact connected sets that converges for the
Hausdorff distance toΓ, the solution to a Neumann problem of the form











−∆vn + vn = f in Ω \ Γn

∂vn

∂ν
= 0 on∂[Ω \ Γn],

is such thatvn,∇vn
n−→ v,∇v, strongly inL2(Ω), with v solution to











−∆v + v = v in Ω \ Γ

∂v

∂ν
= 0 on∂[Ω \ Γ],

Deriving that adaptation, G. DAL MASO & R. TOADER prove in [19] the existence of a
solution to the variational evolution 2.2,under the restriction that the cracks have an a priori
set number of connected components. In turn, A. CHAMBOLLE in [15] proves an analogous
result for plane elasticity, where, as noted before, connectedness seems to be the only viable
assumption.

In fact, the Neumann sieve phenomenon cannot occur because,for n large enough,un,Γn

is not a minimizer for

E(v,Γ) =
1

2

∫

Ω\Γ

|∇v|2 dx + H1(Γ),Γ ⊃ Γn.

with the boundary conditions (3.3). Indeed, by lower semi-continuity,

lim inf
n

E(un,Γn) ≥ 1

2

∫

Ω\Γ

|∇u|2 dx+ 1,

with u defined above. Now,u has non zero bulk energy12
∫

Ω\Γ |∇u|2 dx, sayα, so that, for
n large enough,

E(un,Γn) ≥ 1 +
α

2
.

But E(w,Γ) = 1, a strictly smaller value, whileΓ ⊃ Γn; hence, forn large enough, it is better
to close the holes of the sieve and to take the crack to beΓ. This remark is what prompted
C.J. LARSEN and I to hope for a stability result for one-sided minimalityunder refinement of
the time step.

I now wish to give the reader a rough idea of the challenge at hand in the antiplane shear
case (that whereu is scalar-valued). Recalling the one-sided minimality in 3.1,un(t) satisfies
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in particular

1

2

∫

Ω

W (∇un(t)) dx ≤ 1

2

∫

Ω

W (∇v) dx+HN−1(S(v) \ (S(un(t))∪∂Ωc
d)). (3.4)

We say thatun(t) is aminimizer for its own jump set. It is easily shown that, provided that

U ∈ L∞(0, T ;L∞(IRN )) ∩W 1,1(0, T ;W 1,p(IRN )), (3.5)

then


















un(t) is bounded in L∞(Ω)

∇un(t) is bounded in Lp(Ω; IRN )

HN−1(S(un(t)) is bounded in IR,

from which it is deduced, thanks to Ambrosio’s compactness theorem, that a (a priorit-
dependent) subsequence ofun(t) converges inSBV to someu(t), by which I mean that



















un(t)
n
⇀ u(t), weak-* inL∞(Ω)

∇un(t)
n
⇀ ∇u(t), weak inLp(Ω; IRN )

HN−1(S(u(t))) ≤ lim infn HN−1(S(un(t))).

(3.6)

If one-sided minimality is to be obtained in the limit, thenu(t) should in particular be a
minimizer for its own jump set. In view of (3.6), which implies the lower semi-continuity of
the left hand side of (3.4) by a result of L. AMBROSIO [3], the result would follow easily,
provided that

lim sup
n

HN−1(S(v) \ S(un(t))) ≤ HN−1(S(v) \ S(u(t))).

That such might not be the case is easily demonstrated by consideringv such thatS(v) ⊂
S(u(t)), while un(t) is such thatS(un(t)) ∩ S(u(t)) = ∅ (which would surely happen if
S(un) ⊂ Kn, with Kn ∩ K = ∅ and the Hausdorff distance fromKn to K goes to0); we
would then getHN−1(S(v)) = 0!

This indicates that one cannot hope to prove stability of one-sided minimality without
modification of the test fieldsv. This is in essence what our jump transfer theorem [21],
Section 2, does. Specifically, that theorem says that, forun, u satisfying (3.6), and anyv ∈
SBV (Ω), there exists a sequencevn ∈ SBV (Ω), with



















vn(t)
n−→ v, strongly inL1(Ω)

∇vn n−→ ∇v, strongly inLp(Ω; IRN )

HN−1(S(v) \ S(u(t))) ≤ lim supn HN−1(S(vn) \ S(un(t))).

Stability of one-sided minimality, which is easily derived, for all t’s in I∞, with the
help of the jump transfer theorem, is but the first hurdle to overcome. The solutionu(t),
Γ(t) :=

⋃

{s≤t:s∈I∞} S(u(s)), has to be extended to allt’s in [0, T ]. This can be done fairly
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simply in the scalar valued case(see [21], Section 3.2), butbecomes much more delicate in the
vectorial case because the minimizers of

∫

Ω
W (∇v) dx over{v ∈ SBV (Ω) : S(v) ⊂ Γ},

for Γ,HN−1-rectifiable set, are not unique . The argument necessitatesthe introduction of a
weak notion of set convergence, that ofσp-convergence ([18], Section 4.1), which I will not
describe here.

Then, one should prove non-dissipativity, that is:
∫

Ω

W (∇u(t)) dx + kHN−1(Γ(t)) =

∫ t

0

∫

Ω

DW (∇u(t)).∇(
∂U

∂t
(s)) dxds

+

∫

Ω

W (∇u(0)) dx+ kHN−1(Γ(0)).

Once again, this is not such an easy task. The upper inequality is obtained from an analogous
inequality for the discrete variational evolution. The keyresult (especially in the vector-valued
case) is that

DW (∇un(t)) ⇀ DW (∇u(t)), weakly inLp′

(Ω; IRN(2)

),

which allows to pass to the limit in the upper inequality ([18] Section 4.3).
The lower inequality is a corollary of one-sided minimalityfor u(t), but it requires, either

the t-continuity ofDW (∇u(t)) in Lp (essentially true in the scalar case) [21], or a subtle
approximation result of Lebesgue integrals by appropriateRiemann sums ([18] Section 4.4).

Finally, convergence (for a subsequence) of the discrete bulk energy to the continuous bulk
energy, and of the discrete surface energy to the continuoussurface energy is easily obtained.

Existence of a (weak) variational evolution for theSBV -version of 2.2 or 2.5 is now as-
certained. Remark that, in general,u(t) andΓ(t) have no special properties in time; in other
words, it is not even clear that they are measurable maps. Similarly, it is the sum of the bulk
and surface energy that is absolutely continuous in time, but the bulk energy can suddenly
jump down, and the crack ”length” jump up, at a given time. This is the occurrence of brutal
cracking, an instantaneous extension of the crack; this particular incident is happily encom-
passed in the model that we champion, in striking contrast towhat would happen within the
perimeter of Griffith’s model.

Summarizing, existence of a variational evolution is guaranteed in the following cases:

• antiplane shear, linear of non-linear, subjected to a time-varying hard device [21], [18];

• hyperelasticity, without the determinant condition (no frame indifference), subjected
to a time-varying hard device and to appropriate body and/orsurface forces (no linear
loads!)[18];

• two-dimensional linearized elasticity, , subjected to a time-varying hard device and with
the ”connectedness” restriction [15].

I emphasize that, if no ”connectedness” restriction are imposed on the test cracks, then
the above outlined argument only shows existence of a weak variational evolution; it has
yet to be proved thatΓ(t) is a compact set, so that the classical elasticity problem – with
u ∈W 1,p(Ω \Γ(t); IR(N)) – is well posed onΩ \Γ(t). This would require a regularity result

à la E. DE GIORGI, M. CARRIERO, A. LEACI [20], that is thatHN−1
(

Γ(t) \ Γ(t)
)

= 0, a

formidable task in the current setting.



13

4 Further results

In this section, we list most of the available theoretical results that have been derived in the past
few years with the help of the variational evolution. The approximations results are especially
noteworthy, because they are at the root of the available numerical methods. The numerical
aspects of the variational evolution are varied and fascinating; I would do them injustice, if I
tried to squeeze a short numerical section in this paper and Iprefer to refer the reader to [12]
for a detailed account of some of those. I will merely presenttwo illustrative computations in
Section 6 below.

A first class of results attempts to derive Griffith’s classical criterion (itemii in Griffith’s
model) from the variational evolution, assuming the crack path to be smooth. This is first
achieved in the two-dimensional ”connected” case in [19], Section 8, then, for a flexural plate
model, in [1], Section 7. Note that, to the best of my knowledge, the latter result is new; it
gives an expression for the energy release rate in terms of the coefficients of the singular part
of the displacement field, solution to a fourth order problem.

In a different direction, A. GIACOMINI & M. PONSIGLIONE investigate the interaction
between homogenization and fracture evolution. Forε-dependent bulk energies with uniform
p-growth, andε-dependent surface energies of the brittle type, that is energies of the form
∫

S(v)
kε(x, ν)dHN−1, with a uniform bound from above and below on thekε’s, they prove

that the variational evolution, for a givenε, ”tends to” that of the brittle material that would
have for bulk energy the homogenized bulk energy, and for surface energy, the homogenized
surface energy. There is thus no interplay between homogenization and the variational crack
evolution.

Consider an elastic material with a cohesive – à la Barenblatt type – surface energy , that
is an energy of the form

∫

S(v)

ϕ([v]) dHN−1, ϕ : ϕ(0) = 0 ր ϕ(∞) = 1 on [0,+∞], ϕ concave, ϕ′(0) < +∞.

(4.1)

Seta := ϕ′(0); thenϕ(s) ≤ as for all s ∈ [0,+∞[. It is folklore in the fracture community
that cohesive surface energies give rise to brittle behavior as the size of the sample becomes
large. This issue is addressed by A. GIACOMINI in [25]. The consideration of cohesive type
surface energies introduces an additional difficulty. Indeed, the functional

1

2

∫

Ω

|∇v|2 dx+

∫

S(v)\∂Ωc
d

ϕ(|[v]|) dHN−1,

with ϕ as above, is not lower semi-continuous onSBV (Ω). It needs to be relaxed [10];
its lower semi-continuous envelope is the following functional, defined this time on all of
BV (Ω):

∫

Ω

ψ(|∇v|) dx+

∫

S(v)\∂Ωc
d

ϕ(|[v]|) dHN−1 + a|Dcv|, (4.2)

whereDcv denotes the Cantor part of the measureDv and

ψ(t) :=

{

1
2 t

2, |t| ≤ a

1
2a

2 + a(|t| − a), |t| > a.
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In the case of crack evolution, this needs to be modified, so asto account for irreversibility:
if, at time tni , the crack set isΓn

i , then we consider

inf

{

1

2

∫

Ω

|∇v|2 dx+

∫

(S(v)∪Γn
i−1)\∂Ωc

d

ϕ(|[v]| ∨ gn
i−1) dHN−1

}

,

and set
gn

i := |[un
i ]| ∨ gn

i−1, Γn
i := Γn

i−1 ∪ S(un
i ).

First, it is not obvious that the relaxation process and timestepping commute; second, even if
it is so, recovering the variational evolution for the relaxed functional inBV (Ω) from a time
discretization – currently the only available method – is anopen problem. A. GIACOMINI

considers a sequence of homothetically increasing domainshΩ, with adequate scaling of the
boundary displacementsUh(t, x) := h

1
2U(t, x/h), then a sequence of discrete times that

tends to0 as the size parameterh increases. Rescaling the problem back toΩ, he shows that
this double approximation gives rise, ash ր ∞ to the variational evolution 2.2 discussed in
Section 3. Folklore becomes fact.

The most numerous results concern various approximations of the variational evolutions
2.2. Their shared starting point is the approximation of theMumford-Shah functional for
image segmentation, a huge field in itself. Adaptation of those to the problem at hand has
been circumscribed to two methods. The first derives from thework of L. AMBROSIO &
TORTORELLI [5], [6]. The idea is to approximate in the sense ofΓ-convergence the functional

1/2

∫

Ω

|∇v|2 dx+ HN−1(S(v))

by a two-field functional

∫

Ω

(

1

2
(w2 + o(ε))|∇v|2 dx + ε|∇w|2 +

1

4ε
(w − 1)2

)

dx, 0 ≤ w ≤ 1, (4.3)

the main point being that minimizersvε, wε for the second functional – upon adding suitable
zeroth order terms – will converge to minimizers for the firstone. Specifically,

vε → u, strongly inL2(Ω), ε|∇wε|2 +
1

4ε
(wε −1)2 ⇀ HN−1⌊S(u), weak-* as measures,

whereu is a minimizer for the first functional. The crack set will in essence be the set where
wε does not converge to1. This idea is used and implemented for the discrete variational
evolution by B. BOURDIN [12]; serious numerical issues have to be overcome for a success-
ful implementation of such an algorithm. In [26], A. GIACOMINI proves the existence of a
variational evolution for the approximation – at fixedε – and shows that the resulting time-
parameterized minimizing fields converge to a variational evolution of the (weak) type 2.2.

The second method operates directly at the finite element level. The idea is to look at a
triangulationTε of Ω, where each triangle is roughly of sizeε. Then, two options are available.

The first consists in refining the triangulation as follows: on each side of the triangles ofTε,
a point is chosen, so that its distance to the two vertices of that side is betweenaε and(1−a)ε,
0 < a < 1/2. Then, one considers piecewise-affine fields with possible side-discontinuities
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on each element of the nested new triangulation obtained by joining together all such points.
This is the road traveled by A. GIACOMINI & M. PONSIGLIONE in [27]. At fixed a, ε the
minimization is carried out on the resulting triangulationat discrete times (parameterized by
δ), then all parameters –δ, ε, a – are made to tend to0, and the (weak) variational evolution
2.2 is recovered, at least in the antiplane shear case.

In the second formulation, a concave, non-decreasing, continuous, non-negative function
f with slope1 at t = 0 and limit 1 att = ∞ is introduced. The method consists, for a fixed
triangulationTε, in using an approximation of the Mumford-Shah functional of the form

Gε(v, T ) :=
∑

T∈Tε

|T ∩ Ω|1/hTf(hT |∇vT |2),

hT being the smallest side-length ofT and∇vT being the constant value of the gradient ofu,
with u continuous and affine on eachT ∈ Tε. This approximation is shown by B. BOURDIN

& A. C HAMBOLLE in [11] to Γ-converge to the Mumford-Shah functional, asε ց 0; the
resulting numerical algorithm compares favorably to that based on the Ambrosio-Tortorelli
approximation, notably because it is much faster. In the context of brittle fracture, a variant of
this is proposed by M. NEGRI in [34].

The above mentioned results span, in a nutshell, the range ofavailable results related to the
variational evolution presented in Section 3 and demonstrate its scope and numerical adapt-
ability.

5 A defect and its remedies

The main defect of the variational evolution – its generic inability to handle soft devices – has
been alluded to several times already. This is obvious at thelevel of the discrete variational
evolution. Indeed, the energyE(v,Γ) must be modified, so as to accomodate the work done
by the loads, which I synthetically denote byL(t, v). Now, wheneverL is linear inv and there
is a pairv,Γ for which

∫

Ω\Γ
W (∇v) dx = 0, then

E(λv,Γ)
λ

ց −∞.

This will be the case for example when constant surface loadsare applied on a part∂fΩ of
the boundary.

Consequently, there is no minimum pair forE !
In the framework of ”finite elasticity” (see Remark 3.3 above), this issue can be circum-

vented, at the expense of the exclusion of linear loads ([18], Section 3). The loads should
be such, that the accompanying minimizers forEn

i (v,Γ) (see 3.1) are uniformly bounded in
someLq-space, with1 < q < ∞. To that effect, they are assumed to satisfy a coercivity
hypothesis of the form:

−L(t, v) ≥ α‖v‖q
Lq

− β.

From a mechanical viewpoint, this ensures that, even if the body splits into several compo-
nents, those all remain at finite distance from each other. Ofcourse, such a ”trick” would be
nonsensical in the linearized context.
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It is then tempting to lay the blame on global minimization, the cornerstone of our model.
A criterion of local minimality (meta-stability) would seem more appropriate. It immedi-
ately begs the question of what the measure of locality should be; which distance should one
adopt? A natural distance could be that induced by theBV -norm. If doing so, then the one-
dimensional results in [17] suggest that the cure is not strong enough, because elastic solutions
are shown to remain local minimizers, independently of the loading level: initiation does not
occur. A recent investigation by A. CHAMBOLLE , A. GIACOMINI & M. PONSIGLIONE

establishes a similar result in linearized antiplane shear, provided that the elastic solution re-
mains smooth enough, that is essentially when the singular part of that solution near a point
of singularity grows like|x|α, with α > 1/2.

Replacing global stability by meta-stability brings us even closer to the original Griffith’s
model and indeed, as emphasized before, the absence of crackinitiation is generic in that
model. Consequently, if crack initiation is to be retained as an essential ingredient of a rational
theory for quasistatic brittle fracture, then Griffith’s model has to be further modified. But the
elastic (bulk) part of the energy cannot be challenged. Thus, Griffith’s surface energy is the
weak link.

In the very simple one-dimensional setting, we show in [17] that one should simultaneously
abandon global stability in favor of meta-stability, and Griffith’s surface energy in favor of a
cohesive type energy. Then, a yield stress can be evidenced and soft devices behave like hard
devices. The required tools for a similar analysis in dimensions greater than one are lacking
at present.

6 Numerical implementation: two examples

I present in this final section the results of two numerical computations that illustrate the
practical predictive power of the variational evolution.

The first computation, performed by B. BOURDIN and already presented in [12], is based
on the Ambrosio-Tortorelli approximation detailed in Section 4.

A square elastic matrix is reinforced by a perfectly bonded rigid circular fiber: this is a
plane stress problem. A uniform upwardly directed displacement fieldδ, represented by a
black area in the following figures, is imposed on the upper side of the square; the remaining
sides are traction-free.

The crack is represented by the red lines. The smearing of those lines is due to the approx-
imation, since the colors indicate level sets for the additional variablew in the approximation
(4.3); the red corresponds tow close to0, {w = 0} being the crack site.

As long asδ < .2, the matrix remains purely elastic. Atδ ∼ .2, a crack of finite length
brutally appears slightly above the north pole of the inclusion (figure 1): it is not a boundary
crack. The brutal character of the growth is conform to the results in [22], Section 4, where
brutal crack growth with a finite initiation time is predicted in the absence of singular points
for the purely elastic solution. Whenδ varies between.2 and .32, the crack progressively
grows in the matrix (figure 2).

At δ ∼ .32, the right hand-side of the matrix is brutally cut (figure 3),which also agrees
with the results in [22], Section 4. Whenδ varies between.32 and.37, the left part of the crack
progressively grows (figure 4). Finally, atδ ∼ .37, the crack brutally severs the remaining
filament of uncracked material (figure 5) and the sample is split into two parts.
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Fig. 1 δ ∼ .2: A crack of finite length appears
slightly above the interface.

Fig. 2 The crack extends smoothly on both
sides; the slight asymmetry is a byproduct of
the corresponding asymmetry of the mesh.

Fig. 3 δ ∼ .32: The crack brutally grows on
one side; the choice of the side is a byproduct
of the asymmetry of the mesh.

Fig. 4 The crack grows smoothly on the re-
maining side.

Remark 6.1 It is checked in [12] that Griffith’s criterion (itemii in Griffith’s model of
Section 3) is verified during the progressive phases of the evolution.

Remark 6.2 If the symmetry breaking direction is purely numerical, thecarefully planned
asymmetry of the underlying mesh guarantees the reality of acomputed lateral symmetry.
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Fig. 5 δ ∼ .37: The crack splits the sample,
leading to its failure.

I think it is fairly clear that the complexity of the computedbehavior is well beyond the
scope and analytical power of classical brittle fracture. As noted in [12], the qualitative agree-
ment between our results and experimental observations is quite satisfactory (see [29]).

The second example is a traction experiment on a circular composite cylindrical shaft per-
formed by F. BILTERYST in [9] and reported in [23]. The inner shaft is perfectly bonded to
the outer hollow cylinder. The inner and outer material are each elastic, but the inner shaft is
assumed unbreakable:k, the fracture toughness, is taken to be infinite there. A monotonically
increasing displacement field is applied at each point of theend sections.

Fig. 6 Periodically distributed transverse cracks brutally appear.

Once again, the computation is based on Ambrosio-Tortorelli’s approximation, which ex-
plains the numerical smearing of the crack. Figure 6 shows the instant at which a alternating
set of periodically distributed cracks transverse cracks suddenly appears. Once again, this is in
agreement with our theoretical predictions, yet such a result could not be attained by resorting
to Griffith’s model. Experimental observations [24] qualitatively validate the computation.

Acknowledgements I wish to acknowledge the people who, throughout the years, have collaborated
in developing the model as it stands today: B. Bourdin, A. Chambolle, G. Dal Maso, C.J. Larsen, J.J.
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