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Abstract

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-
zero Dirichlet boundary conditions replace the fidelity term, are investigated. They
are shown to converge to particular critical points of the corresponding variant of the
Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant
is the natural functional when addressing a problem of brittle fracture in an elastic
material.

1 Introduction

In the late 80’s, D. Mumford & J. Shah proposed a new functional for image segmentation in
their celebrated paper [13]. If g ∈ L∞(Ω; [0, 1]) represents a continuous interpolation of the
collected pixelated data over the image domain Ω ⊂ IR2, then the proposed segmentation
consists in minimizing

(u,K) 7→ MS(u,K) :=

∫
Ω\K
|∇u|2 dx+ 2H1(K) + λ

∫
Ω

(u− g)2 dx,

among all compact subsets K ⊂ Ω and all u ∈ H1(Ω\K). In that functional, λ is a positive
weight left to the investigator’s appreciation, K represents the contours of the image, and
u the resulting grey contrast (0 ≤ u(x) ≤ 1).
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Proving existence for minimizers of that functional was not a trivial task and it gave rise
to a abundant literature spearheaded by the work of E. De Giorgi and that of L. Ambrosio
on the space SBV (Ω); see e.g [1]. The underlying idea was to view MS(u,K) as a one
field functional

(1.1) MS(u) =

∫
Ω

|∇u|2 dx+ 2H1(S(u)) + λ

∫
Ω

(u− g)2 dx,

over SBV (Ω), the space of functions u ∈ L1(Ω) such that their distributional derivative is
a Radon measure Du with finite total variation |Du|(Ω), jump set S(u) (the complement of
the set of Lebesgue points for u), and no Cantor part. The next step was to prove existence
of a minimizer um of MS in that space, and then to show that the pair (um, S(um)) was
actually a minimizer for MS. That program was successfully completed, culminating in
[8].

From a computational standpoint, the search for a minimizer of (1.1) is not easy,
because the test fields exhibit discontinuities at unknown locations and the implementation
of classical finite element methods becomes a perilous endeavor. A possible remedy consists
in resorting to variational convergence, specifically Γ-convergence, so as to approximate MS
by a more regular functional – denoted henceforth by ATε – whose minimizers are easier
to evaluate. For more information on Γ-convergence, we refer the interested reader to
e.g. [7] and merely emphasize for now that an important property of Γ-convergence is
that (approximate) minimizers of ATε that converge as ε ↘ 0 will converge to bona fide
minimizers of MS.

There is by now an abundant literature on the approximation of the Mumford-Shah
functional and many approximating sequences have been proposed. The most computa-
tionally efficient in our opinion is that originally proposed by L. Ambrosio & V. Tortorelli
in [3], [4], in the footstep of the functional proposed by L. Modica and S. Mortola for the
approximation of the perimeter [12]. Consider

ATε(u, v) =

∫
Ω

(
(ηε + v2)|∇u|2 + ε|∇v|2 +

(1− v)2

ε

)
dx+ λ

∫
Ω

(u− g)2 dx,

with 0 < ηε << ε. It is proved in [3], [4] that ATε Γ(B(Ω)×B(Ω))-converges to MS, suitably
extended to a two-field functional as

MS(u, v) =

{
MS(u) if v ≡ 1

+∞ otherwise.

Above, B(Ω) stands for the set of all Borel functions on Ω, and the convergence is the
convergence in measure. Actually, we can also view the convergence as taking place in
L2(Ω)× L2(Ω).

The functional ATε is easily seen, through the direct method of the Calculus of Varia-
tions, to admit at least one minimizing pair (uε, vε) ∈ H1(Ω)×H1(Ω), for any fixed value
of ε. The associated sequence is bounded in e.g. L∞(Ω)× L∞(Ω), and a subsequence can
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be shown to converge in measure (and also strongly in L2(Ω)×L2(Ω)) to (u, v ≡ 1), which,
by the already evoked property of Γ-convergence, will be a minimizer for MS.

In an apparently disconnected context, recent years have witnessed the birth of a varia-
tional theory of brittle fracture evolution. One of its constitutive elements is that, at each
time, the total energy of the system, the sum of the elastic and surface energies, is to be
minimized among all admissible competitors [10]. That total energy is a close parent of
the Mumford-Shah functional MS for image segmentation. It is given – say in anti-plane
shear, for which the dispacement field is unidirectional, and for normalized shear modulus
and fracture toughness – by

(1.2) F(u, v) =


∫

Ω

|∇u|2 dx+ 2H1(S(u)) if u ∈ SBV (Ω), and v ≡ 1

+∞ otherwise.

In the context of fracture, the displacement field u is typically constrained by boundary
values, say U on ∂Ω, and the crack may go to the boundary of Ω. Thus we should impose
that

u = U on ∂Ω \ S(u),

u being considered as an element of SBV (IR2) such that u ≡ U on IR2 \Ω with U defined
on IR2 (say U ∈ H1(IR2)). The relevant literature speaks of a hard device in this situation.
In any case, the above quoted Γ-convergence result still applies in the current setting, so
that F , trivially extended to some Ω′ ⊃ Ω, can be variationally approximated by Eε, a
close variant of ATε defined as

(1.3) Eε(u, v) :=

∫
Ω′

(
(ηε + v2)|∇u|2 + ε|∇v|2 +

(1− v)2

ε

)
dx,

with (u, v) ∈ H1(Ω′)×H1(Ω′) and u ≡ U on Ω′ \ Ω.

Remark 1.1 The extension to a larger domain Ω′ permits the introduction of boundary
jumps (boundary cracks) without modification of the resulting surface energy. In the
remainder of the study, we prefer to restrict the functional to Ω, while imposing that the
admissible fields u belong to SBV (IR2) with u = U on IR2 \ Ω. In that case, the correct
surface energy for the Γ(B(Ω)× B(Ω))-limit of Eε is

2H1(S(u) ∩ Ω) +H1(S(u) ∩ ∂Ω).

Although the functional Eε is immediately seen to admit minimizers at fixed ε, those are
not so easily determined computationally because Eε is not convex in its two arguments,
but only separately in each of them. This is a cause of major difficulties, as explained in [6].
The most expedient computational algorithm consists in performing alternate minimization
in each variable at fixed ε. According to [6], that algorithm asymptotically converges
to a critical point (uε, vε) of Eε. Thus, algorithmically, we should investigate the limit
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behavior of critical pairs (uε, vε) for Eε. Note that, at the expense of starting the alternate
minimization with the same profile, say vε = 1, uε = U , we can easily enforce the additional
assumption that

Eε(uε, vε) ≤ C <∞,

for some ε-independent positive constant C.
Critical points of Eε are not necessarily minimizers of Eε, and it is not so clear that

they will converge toward even a critical point of F . We recall, see [2], Chapter 7, that a
critical point of F is a couple (u, v) such that F remains stationary under admissible inner
variations, i.e.,

dF (u ◦ (id+ tφ)−1, 1)

dt
|t=0 = 0, with φ ∈ C∞0 (Ω; IR2).

If they do, then the Ambrosio-Tortorelli approximation scheme will prove even more fruit-
ful, because fracture evolutions are more likely to be paths along critical (or maybe meta-
stable) points for F than those along global minimizers of F , and the result would provide
a theoretical, as well as a numerical tool for extending the variational theory of brittle
fracture to a more realistic setting.

Unfortunately, criticality is not easily reconciled with variational convergence. Success-
ful attempts have been made in other settings such as that of the Allen-Cahn functional in
phase transitions, see [11], [16], [17], or that of the Ginzburg-Landau functional in super-
conductivity, see [5], [15], but, to our knowledge, nothing of the kind has been investigated
in the framework of image segmentation via the Mumford-Shah functional.

This study is a first step in that direction. It investigates the one-dimensional case.
Of course, the one-dimensional setting is of limited interest from the standpoint of ap-
plications to fracture, because one-dimensional fracture is primarily a textbook problem,
except maybe when used in trusses. It is of marginal interest within the context of image
segmentation, i.e., for ATε and MS, although it may prove relevant for the de-blurring
of bar codes [18]. Pursuing a similar analysis in a higher dimensional setting is quite a
challenge for the time being. Among the many obstacles, the lack of explicit solutions for
the Euler-Lagrange system associated with the criticality of the approximating fields uε, vε
for the Ambrosio-Tortorelli functional (see (2.4) below) makes the jump profile for vε less
evident than in the Allen-Cahn, or Ginzburg-Landau settings. But, the knowledge of an
explicit optimal profile in those settings is a precious ingredient in the analysis of critical
points.

In the next section, the one-dimensional functional is introduced and the three main
results are stated: the convergence of critical points of Eε to specific critical points of F
(see Theorem 2.2); conversely, any specific critical point of F as described in Theorem 2.2
is actually a limit of critical points of Eε (see Theorem 2.4); finally, the convergence of
the various terms in the energy Eε to their F -analogues (see Theorem 2.5). The reader
will note that, thanks to Theorem 2.2, the Ambrosio-Tortorelli approximation acts as
a selection mechanism for the Mumford-Shah functional, in that only critical points with
jumps that are symmetrically located on the interval of study can be obtained through that
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approximation and that, thanks to Theorem 2.4, all of those are actually attained as limits
of critical points of Eε. Also, Theorem 2.5 demonstrates that, generically, the Ambrosio-
Tortorelli energy evaluated at one of its critical points converges to the Mumford-Shah
energy, evaluated at the limit of that (sequence of) critical point(s). Section 3 establishes
some general a priori estimates, and most notably bounds the discrepancy (see (3.3)), a
pivotal quantity in the study of critical points because of its link to the energy momentum
tensor (see e.g. [5], [14]). Section 4 is devoted to the proof of the first theorem; Section 5
carries out that of the second theorem, while Section 6 details that of the third theorem.

2 Statement of the results

Throughout, C stands for a generic positive constant (so that e.g. C = 2C) and L is the
length of the interval under consideration.

For ε > 0, we consider the following ε-indexed one-dimensional Ambrosio-Tortorelli
type functional (see (1.3)):

(2.1) Eε(u, v) =

∫ L

0

(
(ηε + v2)(u

′
)2 + ε(v

′
)2 +

(1− v)2

ε

)
dx.

In (2.1), ηε is a positive number, and (uε, vε) belongs to the space Yε defined by

Yε := {u, v ∈ H1(0, L), u(0) = 0, u(L) = aε}

with aε > 0. Note that these boundary constraints are not really restrictive in one dimen-
sion (up to translation of u).

We assume that, as ε↘ 0,

(2.2) aε → a > 0; ηε/ε→ 0, i.e., ηε � ε.

We also introduce, for u ∈ SBV (IR), the one dimensional Mumford-Shah functional
(see (1.2) and Remark 1.1):

(2.3) F(u, v) =


∫ L

0

(u′)2 dx+ 2# (S(u) ∩ (0, L)) + # (S(u) ∩ {0, L}) if v ≡ 1

+∞ otherwise.

In (2.3), u′ denotes the approximate derivative of u, i.e., the density of the absolutely
continuous part of the measure Du with respect to the Lebesgue measure, while S(u)
denotes the jump set of u, defined as the complement in IR of the set of Lebesgue points
of u.

As explained in the introduction, we wish to impose Dirichlet type boundary conditions
on the test fields. Thus, the pair (u, v) should lie in Y defined as

Y := {u ∈ SBV (IR) : u ≡ 0 on (−∞, 0), u ≡ a on (L,+∞)} × L∞((0, L)),
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so that, in particular, S(u) ⊂ [0, L].
The spaces Yε and Y are endowed with the L2((0, L), IR2) topology. We recall that

Eε Γ-converges to F hence minimizers of Eε converge to minimizers of F . Those are very
easy to identify: for a <

√
L the only minimizer is u ≡ ax/L, while for a >

√
L they

are u = aχ(L,∞), or u = aχ(0,∞), where χ denotes the characteristic function of a set (for

a =
√
L all of the above are minimizers). Thus we see that fracture is indeed induced by

this model, even for minimizers, by a boundary “tug” when a large enough. Minimization
favors boundary cracks because the associated surface energy has a lesser weight (1 versus
2). In the context of Remark 1.1, an energy that would weigh equally (0, L) and {0, L}
would produce, for a >

√
L, a minimizer of the form u = aχ(b,∞) for any b ∈ [0, L].

However, our results below would prove that not all of these minimizers are produced by
this limit process.

As announced in the introduction, we propose to study the convergence property of crit-
ical points other than the minimizers. The critical points of the one dimensional Mumford-
Shah functional are easily identified from (7.42) in [2], Ch. 7, as those pairs (u, v) with
v ≡ 1, and u piecewise constant with a finite number of jumps, or u ≡ ax/L.

Let (uε, vε) be critical points of the Ambrosio-Tortorelli functional (2.1), i.e., pairs of
functions (uε, vε) ∈ Yε that satisfy the Euler-Lagrange equations

(2.4)

−εv′′

ε + vε(u
′

ε)
2 +

vε − 1

ε
= 0

[u
′

ε(ηε + v2
ε)]
′ = 0

uε(0) = 0, uε(L) = aε

v
′

ε(0) = v
′

ε(L) = 0.

Our main goal is to study the limit properties of (uε, vε) as ε goes to 0, provided additionally
that

(2.5) Eε(uε, vε) ≤ C <∞.

The above bound is natural from a computational standpoint, as already emphasized in
the introduction.

Note that the second equation of (2.4) implies that

(2.6) u
′

ε(ηε + v2
ε) = cε,

for some constant cε. It follows that u
′
ε has a constant sign. The Dirichlet boundary

conditions on uε imply that cε > 0 and thus that

(2.7) uε ↗ from 0 to aε.
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One can substitute the relation (2.6) into the first equation of (2.4), and obtain

(2.8)
−εv′′

ε +
vεc

2
ε

(ηε + v2
ε)

2
+
vε − 1

ε
= 0

v
′

ε(0) = v
′

ε(L) = 0.

It is a crucially convenient feature of the one-dimensional case that the system of ODE’s
can be reduced to this single second-order ODE (up to the unknown parameter cε though)
with Neumann boundary conditions. We will use the properties, in particular symmetry
properties, of solutions to this type of ODE’s. However it is not our goal to completely
classify the solutions to (2.8) or perform their stability analysis. Rather we focus on the
ε→ 0 asymptotic analysis and we look to employ, as much as possible, arguments that are
independent of the dimension and could be recast in dimensions higher than 1.

Remark 2.1 Equation (2.6) would still hold true if Neumann boundary conditions, namely
u′ε(0) = u′ε(L) = 0, were imposed on uε, in lieu of the adopted Dirichlet boundary condi-
tions. But then, u′ε ≡ 0, vε ≡ 1, and the problem becomes trivial.

It is the presence of the fidelity term
∫ L

0
|u− g|2 dx of image segmentation that renders

the Neumann problem non-trivial. As mentioned in the introduction, our present focus is
the Dirichlet case, where no fidelity term is present.

Our main result is the following. It states on the one hand the symmetry properties of
the solutions to (2.4), and on the other hand the more difficult fact that cε can only cluster
to the two values 0 and a/L.

Theorem 2.2 At the possible expense of extracting a subsequence of ε ↘ 0, cε → c0

where c0 ∈ {0, a/L} and (uε, vε) converges to a critical point (u, 1) of F . In other words,
uε(x)→ u(x)(∈ SBV (IR)) and vε(x)→ 1, for a.e. x ∈ (0, L).

If c0 = a/L, the limit critical point is u ≡ ax/L.
If c0 = 0, there exists a fixed number n such that, at the possible expense of extracting

a subsequence of ε ↘ 0, vε – extended by symmetry to (−L,L) – is a juxtaposition of
n identical graphs. The repeated subgraph exhibits either a strict minimum point (“well
case”), for all ε’s, or a strict maximum point, for all ε’s (“bell case”). The limit critical
point u – extended by anti-parity to (−L,L) – is constant on (−L,−L+ L/n), with value
−a in the former case (see Figure 1), or on (−L,−L+ 2L/n), with value −(n− 1)a/n in
the latter case (see Figure 2), then it jumps by a value of 2a/n at the end of each interval
of length 2L/n .

Remark 2.3 The Ambrosio-Tortorelli functional acts as a selector for the critical points
of the Mumford-Shah functional, in that it asymptotically equi-distributes the possible
jumps of u over the interval [0, L]. The graph of u extended by antiparity looks like a piece
of a “perfect staircase”: all steps have the same height and the same width.
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Our next main result is a converse of the above theorem in the sense that any “perfect

a

a/2

-a

-a/2

v

u

Figure 1: n=4, well case

a

3a/4

-a

-3a/4

v

u

a/4

-a/4

Figure 2: n=4, bell case
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staircase” critical point of the Mumford-Shah functional F as described in Theorem 2.2 is
actually a limit of critical points of the Ambrosio-Tortorelli functional Eε.

Theorem 2.4 Let u be a “perfect staircase” function on [0, L] with n steps when viewed as
a function on [−L,L] as described in Theorem 2.2. Then, for all ε sufficiently small, there
exists a critical point (uε, vε) (i.e., with v

′
ε(0) = v

′
ε(L) = 0 and uε(0) = 0, uε(L) = aε), of

Eε such that vε has exactly n isolated local maxima in [−L,L] and

(2.9) lim
ε→0
‖uε − u‖L2((0,L) or equiv. (−L,L)) = 0.

We are also in a position to evaluate the measure limits of each of the terms entering
the energy functional defined in (2.1). This is the object of the following

Theorem 2.5 If uε → u, a critical point for the Mumford-Shah functional, as given in
Theorem 2.2, then

• The limit measure of (ηε + v2
ε)(u

′
ε)

2dx is (u′)2dx, u′, the approximate gradient of u,
being 0 or a/L;

• The limit measure of ε(v′ε)
2dx, which is also that of (1− vε)2/εdx, is a finite sum

of Dirac masses which, in the case that u is piecewise constant (c0 = 0), are located
at the end of each step of the “perfect staircase” that represents u. Each of those
masses has weight 1 when the mass is located inside (0, L) and 1/2 if it is located at
x = 0, L, if any.

Remark 2.6 In the case c0 = a/L, we expect that, for ε small enough, uε(x) = aεx/L
and vε(x) = L2/(L2 + a2

εε), which would prove that vε has no v-jump in the sense of
Definition 3.5 below, and thus that the resulting measure limit is always

∑
x∈S(u)∩(0,L) δx +

1/2
∑

x∈S(u)∩{0,L} δx.

3 Preliminary Estimates

3.1 Classical a priori estimates

In this section, we establish a few canonical estimates that will prove instrumental in the
proof of Theorems 2.2, 2.5. These estimates are completely standard but we include their
proofs for convenience of the reader. The a priori bound (2.5) is essential in all that follows.

First note that, from (2.5) and (2.6),

C ≥ Eε(uε, vε) ≥
∫ L

0

(ηε + v2
ε)(u

′

ε)
2dx =

∫ L

0

cεu
′

εdx = aεcε,

so that

cε ≤
C
aε
.
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Hence, up to the possible expense of extracting a subsequence,

(3.1) cε → c0, ε↘ 0.

The proof of Theorem 2.2 will hinge on the actual values that c0 can take. This will be
the object of Lemma 4.4 in the next section.

For now, we prove some elementary estimates on the critical points (uε, vε) of (2.1),
which, by the way, are smooth by elliptic regularity.

A first result is a maximum principle for vε, namely,

Lemma 3.1
0 ≤ vε ≤ 1.

Proof. Multiplying both sides of the first equation of (2.4) by v−ε = max(0,−vε), we get∫ L

0

−εv′′

ε v
−
ε dx+

∫ L

0

vε(u
′

ε)
2v−ε dx+

∫ L

0

vε − 1

ε
v−ε dx = 0.

Because of the Neumann boundary conditions on vε, this yields∫ L

0

εv
′

ε(v
−
ε )

′
dx+

∫ L

0

vε(u
′

ε)
2v−ε dx+

∫ L

0

vε − 1

ε
v−ε dx = 0,

or still

(3.2) −
∫ L

0

ε((v−ε )
′
)2dx−

∫ L

0

(v−ε )2(u
′

ε)
2dx−

∫ L

0

(v−ε + 1)

ε
v−ε dx = 0.

Each term on the right hand side of (3.2) is nonpositive. Thus,∫ L

0

(v−ε + 1)

ε
v−ε dx = 0,

hence v−ε ≡ 0.
Multiplication of the first equation of (2.4) by (vε − 1)+ = max(0, vε − 1) would yield

the other inequality. �

Next, we establish the convergence properties of the pair (uε, vε).

Lemma 3.2
vε → 1, strongly in L2((0, L)),

and, modulo extraction,

uε → u ∈ BV ((0, L)), strongly in L1((0, L)),

u′ε → c0, a.e. in (0, L).

Further, |Du|((0, L)) ≤ a and c0 ≤ a/L.
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Proof. The energy bound (2.5) immediately implies the first convergence. The monotone
character (2.7) of uε, together with (2.2), implies that uε is bounded in BV ((0, L)). By
the compactness of BV in L1 (see [9]), a subsequence of uε converges in L1((0, L)) to
u ∈ BV ((0, L)).

Because of the weak lower semi-continuous character of the total variation,

|Du|((0, L)) ≤ lim inf
ε
|Duε|((0, L)) = lim inf

ε
aε = a,

hence the bound on |Du|((0, L)).
By virtue of (2.6),

u
′

ε(x)→ c0 as ε→ 0 for a.e x ∈ (0, L).

Fatou’s lemma then yields the following refined bound on c0:

c0L =

∫ L

0

lim
ε→0

u
′

ε ≤ lim
ε→0

∫ L

0

u
′

ε = a.

�

It is also standard that, in such a context, a Noether type conservation law holds, as
stated in the following

Proposition 3.3 {
1

2

(
(1− vε)2

ε
− (ηε + v2

ε)(u
′

ε)
2 − ε(v′

ε)
2

)}′

= 0.

Proof. The left hand side of the previous expression also reads as

Aε :=
(vε − 1)v

′
ε

ε
− εv′

εv
′′

ε − vεv
′

ε(u
′

ε)
2 − (v2

ε + ηε)u
′

εu
′′

ε

= v
′

ε(−εv
′′

ε − vε(u
′

ε)
2 +

vε − 1

ε
)− (v2

ε + ηε)u
′

εu
′′

ε .

The first and second equation of (2.4) then imply that

Aε = −v′

ε(2vε(u
′

ε)
2)− (v2

ε + ηε)u
′

εu
′′

ε = −u′

ε[u
′′

ε (ηε + v2
ε) + 2vεv

′

εu
′

ε] = −u′

ε[u
′

ε(ηε + v2
ε)]
′ = 0.

�
An immediate consequence of the proposition above is that

(3.3)
(1− vε)2

ε
− (ηε + v2

ε)(u
′

ε)
2 − ε(v′

ε)
2 = dε

for some constant dε. Furthermore, we can estimate this discrepancy constant dε as follows

|dε|L =

∫ L

0

|dε| dx =

∫ L

0

∣∣∣∣(1− vε)2

ε
− (ηε + v2

ε)(u
′

ε)
2 − ε(v′

ε)
2

∣∣∣∣ dx
≤

∫ L

0

{
(1− vε)2

ε
+ (ηε + v2

ε)(u
′

ε)
2 + ε(v

′

ε)
2

}
dx ≤ C.
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Thus,

(3.4) |dε| ≤ C.

This bound is key to the following gradient estimates.

Lemma 3.4 For ε small enough,∥∥∥u′

ε

∥∥∥
∞
≤ C

(εηε)1/2
and

∥∥∥v′

ε

∥∥∥
∞
≤ C
ε
.

Whenever c0 > 0, the following refined estimates hold true:∥∥∥u′

ε

∥∥∥
∞
≤ C
ε
,

vε(x) ≥ C
√
ε, ∀x ∈ (0, L).

Proof. From (3.3) and (3.4), we find that

(3.5) ε(v
′

ε)
2 =

(1− vε)2

ε
− (ηε + v2

ε)(u
′

ε)
2 − dε ≤

(1− vε)2

ε
+ C ≤ 1

ε
+ C,

from which the L∞-estimate of v
′
ε follows. Moreover,

(3.6) cεu
′

ε = (ηε + v2
ε)(u

′

ε)
2 =

(1− vε)2

ε
− ε(v′

ε)
2 − dε ≤

(1− vε)2

ε
+ C ≤ 1

ε
+ C ≤ 2

ε

from which the refined estimate on the L∞-norm of u
′
ε follows if c0 > 0. The lower bound

for vε is in turn immediate from (3.6), (2.6) and (2.2).
Finally, because u

′
ε = cε/(ηε + v2

ε), we deduce from (3.6) that

(u
′

ε)
2 ≤ 2

εcε

cε
ηε + v2

ε

≤ 2

εηε

and thus obtain the first estimate on the L∞-norm of u
′
ε, independently of the value of c0.

�

3.2 Definition of v-jump

We start by the following remark: recalling that u′ε = cε/(ηε + v2
ε), we may rewrite (3.3)

in the form

(3.7)
(1− vε)2

ε
− c2

ε

ηε + v2
ε

− ε(v′

ε)
2 = dε.

Consequently, if xε is a critical point of vε, i.e. v
′
ε(xε) = 0 and, using the fact that vε ≤ 1,

we have
(ηε + v2

ε(xε))(1− vε(xε))2 ≤ ε(c2
ε + |dε|).
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It easily follows that either vε(xε) > 1−2
√
ε
√
c2
ε + |dε| or vε(xε) < 2

√
ε
√
c2
ε + |dε|. Recall-

ing that cε and |dε| are both bounded independently of ε, we can write that there exists
a constant C such that the extremal values of vε are either > 1 − C

√
ε or < C

√
ε. Let

us denote by mε = min[0,L] vε and Mε = max[0,L] vε it follows that two cases are possible:
either

(3.8) mε > 1− C
√
ε,

or

(3.9) mε < C
√
ε and 1− C

√
ε < Mε.

Indeed, the case Mε < C
√
ε would violate the energy bound (2.5).

This motivates the

Definition 3.5 We call xε ∈ [0, L] a v-jump if xε is a critical point of vε with vε(xε) ≤
C
√
ε.

In view of the above discussion, it is equivalent (for ε small enough) to define a v-jump as
a critical point of vε such that vε(xε) ≤ aε with aε ≤ α for any threshhold value α < 1.
Moreover case (3.8) happens if and only if there is no v-jump, and case (3.9) if and only if
there is at least a v-jump.

Note that the pair
(uε, vε) =

(
aεx/L, L

2/(L2 + εa2
ε)
)

is always a solution of (2.4).
We now show that in the case (3.8), or the case of no v-jump, it is the only possible

solution.

Lemma 3.6 If, for some ε sufficiently small, vε has no v-jump in (0, L) then the only
solution to (2.4) is (uε, vε) = (aεx/L, L

2/(L2 + εa2
ε)) .

Proof. Differentiating equation (2.6), we get u
′′
ε (ηε + v2

ε) + 2vεv
′
εu

′
ε = 0 and therefore

(3.10) u′′ε =
−2vεu

′
εv

′
ε

ηε + v2
ε

.

Differentiating the first equation in (2.4) gives

(3.11) −εv′′′

ε + v
′

ε(u
′

ε)
2 + 2vεu

′

εu
′′

ε +
v

′
ε

ε
= 0.

Substituting (3.10) into (3.11), we find that

−εv′′′

ε + v
′

ε

[
(u

′

ε)
2 +

1

ε
− 4

(vεu
′
ε)

2

ηε + v2
ε

]
= 0.
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With w := v
′
ε, the above equation becomes

(3.12)

{
−εw′′

+ weε = 0

w(0) = 0, w(L) = 0,

where

eε = (u
′

ε)
2 +

1

ε
− 4

(vεu
′
ε)

2

ηε + v2
ε

and substituting (2.6)

eε =
1

ε
+

c2
ε

(ηε + v2
ε)

2
− 4

c2
εv

2
ε

(ηε + v2
ε)

3
=

(ηε + v2
ε)

3 + εc2
ε(ηε − 3v2

ε)

ε(ηε + v2
ε)

3

When there is no v-jump then, as remarked above, vε ≥ 1
2

and one can easily show that
then eε > 0. Multiplying (3.12) by w and after suitable integration by parts, it follows
that (3.12) has a unique solution w ≡ 0. Thus vε is a constant. Hence the result. �

An obvious corollary of Lemma 3.6 is

Remark 3.7 Whenever c0 = 0, then there exists a v-jump for a subsequence of ε↘ 0.

4 Proof of Theorem 2.2

4.1 Symmetry properties

We start by stating some relatively easy symmetry properties of the solutions to (2.4).
These follow from the equation (2.8) which we recall here

(4.1)

−εv
′′

ε +
vεc

2
ε

(ηε + v2
ε)

2
+
vε − 1

ε
= 0

v
′

ε(0) = v
′

ε(L) = 0.

Observe that that equation is of the form

(4.2)

{
v

′′

ε = fε(vε)

v
′

ε(0) = v
′

ε(L) = 0,

with fε of class C2. Symmetry properties follow.

Lemma 4.1 The graph of vε is symmetric with respect to all the vertical lines passing
through its critical points, which in turn are all (including boundary points) absolute max-
ima or minima of vε.
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Proof. If xcε is a critical point of vε, then we can symmetrize the graph of vε through
the vertical line x = xcε. The uniqueness provided by the Cauchy-Lipschitz theorem for
(4.2) imply the symmetry of the graph of vε around this line. In particular the graph of
vε can be symmetrized with respect to x = 0 and vε can thus be extended into an even
function on [−L,L]. Given xcε a critical point of vε, the above mentioned symmetry implies
the maximality or minimality of xcε on (−L, 2xcε + L), and ultimately, by reiteration, on
(−L,L). �

In the sequel we will often consider this extension of vε to [−L,L], still denoting it vε.
With the same symmetry argument, we obtain the following more precise description

of the graph of vε.

Proposition 4.2 Given ε, there exists an integer nε such that the graph of vε in (−L,L)
is made of nε identical symmetric subgraphs. Moreover, if there is a v-jump, then each
subgraph is a symmetric well with a unique interior critical point which is a v-jump, or a
symmetric bell with a v-jump at each end (see Figure 3).

(i) (ii)

Figure 3: (i) the well, (ii) the bell.

It remains to show that nε may be chosen independently of ε. To this effect, we calculate
the cost of each v-jump for ε sufficiently small. When there is a v-jump we are in case
(3.9). Thus we can find points α < β on each subgraph satisfying say vε(α) ≤ 1/10 and
vε(β) ≥ 9/10. Consequently, each v-jump costs at least∫ β

α

(
ε(v

′

ε)
2 +

(1− vε)2

ε

)
dx ≥

∫ β

α

∣∣∣2v′

ε(1− vε)
∣∣∣ dx

≥
∣∣∣∣∫ β

α

(2vε − v2
ε)
′ dx

∣∣∣∣ = (2vε − v2
ε)(β)− (2vε − v2

ε)(α) ≥ 3/4.(4.3)
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Thus, because of the energy bound (2.5), nε must be bounded.
So, up to possible subsequence extraction, we can consider that nε is a constant n for

all ε sufficiently small.

Remark 4.3 The uniqueness of the “well” and “bell” profiles is not clear to us at this
time. If it is the case, then solutions to (2.4) would be completely determined by their
number of jumps (+ boundary values).

4.2 Characterisation of the possible limiting slopes

We prove that cε can only converge to two possible values.

Lemma 4.4 c0 ∈ {0, a/L}.

Proof. Note that, by Lemma 3.2, c0 ≤ a/L. Assume by contradiction that 0 < c0 < a/L.
We first explain the idea of the proof. By Lemma 3.6, the difficulty in the proof can

only come from the smallness of vε. In other words, there must be a v-jump. Then,
let xε ∈ [0, L] be the miniminal point of vε on [0, L]; according to (3.9), vε(xε) ≤ Cε1/2.
Combining this with the lower bound on v in Lemma 3.4, we obtain that

min
[0,L]

vε ∼
√
ε.

Our proof is then based on the estimate on the size of the set {vε ≤ M
√
ε}, for M large

enough.
Recalling that u

′
ε = cε/(ηε + v2

ε), we rewrite the first equation of (2.4) as

−εv′′

ε +
vεc

2
ε

(ηε + v2
ε)

2
+
vε − 1

ε
= 0.

Intergrate this equation over {vε ≤M
√
ε} to obtain

(4.4)

∫
{vε≤M

√
ε}
εv

′′

ε dx =

∫
{vε≤M

√
ε}

vεc
2
ε

(ηε + v2
ε)

2
dx+

∫
{vε≤M

√
ε}

vε − 1

ε
dx.

We now recall that
(4.5)
The number of connected components of Dε :={vε ≤M

√
ε} is bounded by a constant C.

Indeed the study of the previous subsection implies that the number of connected compo-
nents of Dε is precisely the number of periods of vε, hence that it is bounded by nε+1 ≤ C.

On each connected component (ai, bi) of Dε, we obtain, by virtue of the gradient bound
of Lemma 3.4, ∣∣∣∣∫ bi

ai

εv
′′

ε

∣∣∣∣ =
∣∣∣εv′

ε(bi)− εv
′

ε(ai)
∣∣∣ ≤ C.
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Then, with (4.5), the left hand side of (4.4) is bounded from above by C. Because c0 > 0,
Lemmata 3.1, 3.4 imply that 1 ≥ vε(x) ≥ C

√
ε, ∀x ∈ [0, L]. It follows that, for ε sufficiently

small, v2
ε(x)� ηε, ∀x ∈ [0, L]. Thus the right hand-side is bounded from below by∫

{vε≤M
√
ε}

Cvε
v4
ε

dx−|{vε ≤M
√
ε}|

ε
≥ C |{vε ≤M

√
ε}|

M3ε3/2
−|{vε ≤M

√
ε}|

ε
≥ C |{{vε ≤M

√
ε}|

M3ε3/2
.

Therefore, for ε sufficiently small,

C ≥ C |vε ≤M
√
ε|

M3ε3/2
,

implying in turn that

(4.6)
∣∣{vε ≤M

√
ε}
∣∣ ≤ CM3ε3/2.

Using this inequality and the refined gradient bound for uε in Lemma 3.4 yields

aε =

∫ L

0

u
′

εdx =

∫
{vε≤M

√
ε}
u

′

εdx+

∫
{M
√
ε≤vε≤ 1

2
}
u

′

εdx+

∫
{vε≥ 1

2
}
u

′

εdx

≤ CM3ε1/2 +

∫
{M
√
ε≤vε≤ 1

2
}
u

′

εdx+

∫ L

0

u
′

εχ{vε≥ 1
2
}dx =: CM3ε1/2 + Jε +Kε.(4.7)

Next, we bound Jε and Kε from above.
Because u

′
ε(x) → c0 a.e x ∈ (0, L) and χ{vε≥ 1

2
}(x) → χ(0,L)(x) a.e x ∈ (0, L), it follows

that wε(x) := u
′
ε(x)χ{vε≥ 1

2
}(x) → c0χ(0,L)(x) a.e. x ∈ (0, L). On the other hand, for all

x ∈ (0, L),

|wε(x)| = cε
ηε + v2

ε(x)
χ{vε≥ 1

2
}(x) ≤ 4cε ≤ C.

Hence, by Lebesgue’s dominated convergence theorem,

(4.8) Kε =

∫ L

0

wεdx→
∫ L

0

c0χ(0,L)dx = c0L.

From the energy bound (2.5), it follows that

C ≥
∫ L

0

(1− vε)2

ε
dx ≥

∫
{vε≤1/2}

(1− vε)2

ε
dx ≥

∫
{vε≤1/2}

1

4ε
dx =

1

4ε
|{vε ≤ 1/2}| ,

yielding the estimate

(4.9)
∣∣{M√ε ≤ vε ≤ 1/2}

∣∣ ≤ |{vε ≤ 1/2}| ≤ Cε.

On {M
√
ε ≤ vε ≤ 1/2}, we recover, for ε small enough, the refined estimate on u′ε from

Lemma 3.4, that is

(4.10) u
′

ε =
cε

ηε + v2
ε(x)

≤ cε
v2
ε

≤ cε
M2ε

≤ 2c0

M2ε
.
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Inserting inequalities (4.9), (4.10) into the expression for Jε produces the following uniform
upper bound:

(4.11) Jε =

∫
{M
√
ε≤vε≤ 1

2
}
u

′

ε ≤
2c0

M2ε
Cε =

C
M2

.

Coalescing (4.7), (4.8) and (4.11) and letting ε tend to 0 finally leads to

a ≤ C
M2

+ c0L.

We let M tend to ∞ and obtain a contradiction since a > c0L. Thus c0 ∈ {0, a/L} as
desired. �

Remark 4.5 In this proof we have tried again to make minimal use of one-dimensional
arguments. The only place where the symmetry of the solution is used for simplicity is in
the proof of (4.5). But this can easily be avoided: we can show instead directly from (2.8)
that the number of connected components of Dε is bounded by Cε−1/3 and this suffices in
the proof.

4.3 Form of u

It remains for us to establish the form of the limit critical point. Note that uε is also
extended by reflection about 0 so that

(4.12) uε(−L) = −aε.

Proposition 4.2 immediately implies the following quantization property for the function
uε:

(4.13) uε(−L+
2kL

n
) = −aε +

2kaε
n

for 0 ≤ k ≤ n.

Indeed, recalling (2.6),(4.12),

2aε =

∫ L

−L

cε
ηε + v2

ε

dx = n

∫ −L+2L/n

−L

cε
ηε + v2

ε

dx = n

(
uε

(
−L+

2L

n

)
+ aε

)
.

Now, denote by n the number of times vε reaches its minimal value (n = n in the well
case and n = n+1 in the bell case). Because of the quantization property (4.13), it suffices
to consider the case n = 1 in the well case, and n = 2 in the bell case.

Assume first – well case – that vε(−L) = vε(L) = Mε and that vε reaches its minimum
(a v-jump) at x = 0 and that 0 is the only critical point for vε on (−L,L).

Fix δ < L. Then, for ε sufficiently small, vε converges to 1 uniformly on K := [δ, L].
Indeed, the closed set Aε := {x ∈ (−L,L) | vε(x) ≤ 1 − ε1/4} is centered around 0, as
immediately seen from the assumption that there is only one critical point at 0. Further,

C ≥
∫ L

−L

(1− vε)2

ε
≥
∫
Aε

(ε1/4)2

ε
=
|Aε|
ε1/2

,
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hence diam (Aε) ≤ Cε1/2 < δ for ε ≤ ε0.
Consequently, u

′
ε = cε/(ηε + v2

ε) converges uniformly to c0(= 0) on K. Thus for any
x ∈ K

(4.14) uε(x) = uε(L)−
∫ L

x

u
′

ε(t)dt = aε −
∫ L

x

u
′

ε(t)dt −→ a− c0(L− x).

Using the arbitrariness of δ, we conclude, since c0 = 0, that u = a on (0, L]. Similarly, we
would find that u = −a on (−L, 0).

Assume now – bell case – that vε(−L) = vε(L) = mε and that vε reaches its maximum
at x = 0 and that 0 is the only critical point for vε on (−L,L). An argument identical to
that above would demonstrate that u′ε converges uniformly to 0 on K := [−L + δ, L− δ],
for δ small. But we know that uε(0) = 0, so that, for any x ∈ (−L,L),

(4.15) uε(x) = uε(0) +

∫ x

0

u
′

ε(t)dt = 0 +

∫ x

0

u
′

ε(t)dt −→ c0x.

Using the arbitrariness of δ, we conclude, since c0 = 0, that u = 0 on (−L,L).

Remark 4.6 Note that all results of this subsection hold true in the case c0 6= 0, in
particular (4.14), (4.15), provided that vε admits a v-jump.

Finally we examine the case c0 = a/L. If there is no v-jump then in view of Lemma
3.6, the result is that announced in Theorem 2.2. If there is a v-jump, then according to
Remark 4.6, all results of the previous case hold true and, in particular, (4.14), (4.15).
Hence the result upon replacing c0 by a/L.

5 Proof of Theorem 2.4

In this section, we prove Theorem 2.4. To this end, we will use the Γ-convergence of
the Ambrosio-Tortorelli functional Eε to the Mumford-Shah functional F together with the
equi-distribution of the v-jumps of any critical point (uε, vε) of Eε.

Suppose now that u is a piecewise constant function with n steps in [0, L] as described
in Theorem 2.2. Because our method is general enough to handle all possible configurations
of u, we can assume from now on that, with N := n − 1, u ≡ 0 on (0, L/2N), jumps by
a/N at L/2N , and then jumps by a value of a/N at the end of each interval of length L/N .
We will construct critical points of Eε – points that satisfy the Euler-Lagrange equations
(2.4) – that converge to (u, 1).

Before going into the details of the proof, we briefly explain the ideas. Suppose we
have found (uε, vε). Then, from Theorem 2.2, we know that vε has a periodic structure
with an equi-distribution of v-jumps. Furthermore, the function uε enjoys a quantization
property: its values at v-jumps are explicit, depending only on aε, L and the number of
jumps. By our assumption on the structure of u, the graph of vε is expected to consist
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of N symmetric wells on [0, L]. Then, we have uε(0) = 0 and uε(kL/2N) = kaε/2N for
0 ≤ k ≤ 2N . Furthermore, the graph of vε on [0, L/2N ] is a half-well with a sink at
x = L/2N . This sink is clearly a v-jump. If we are able to construct a critical point
(uε, vε) of Eε on [0, L/2N ] having one v-jump with uε(0) = 0 and uε(L/2N) = aε/2N , then
we can glue appropriately identical pieces of this critical point to produce a critical point
of Eε on [0, L], still denoted by (uε, vε), such that uε(0) = 0, uε(L) = aε and also that vε has
N v-jumps and n = N+1 local maxima. The gluing process is always possible because the
first equation of (2.4) is satisfied on each interval of length L/2N and also, since v

′
ε = 0,

at the gluing points. We can thus assume without loss of generality that N = 1 and that
the v-jump is at x = L. In this case, for ε small, the graph of the function vε, if it exists,
is a half-well and u = 0 in [0, L) with u(L) = a. We now investigate the details.

The sought functions vε clearly belong to

U := {v ∈ H1(0, L) : µ ≤ v(0) ≤ 2− µ; v(L) ≤ α}.

In the above definition, 0 < α < µ < 1, both are independent of ε. Further conditions on
µ and α will be added later on whenever necessary.

The heuristic argument above suggests that we seek local minimizers (uε, vε) in the
following set

Bε := {(u, v) ∈ (H1(0, L))2 : u(0) = 0, u(L) = aε, v ∈ U}.

We use the following notation:

Fε(v, r, s) :=

∫ s

r

(
ε(v

′
)2 +

(1− v)2

ε

)
dx

for 0 ≤ r ≤ s ≤ L and note that, for f(x) = x − x2/2, then, for all v ∈ H1(0, L) and for
all 0 ≤ x1 ≤ x2 ≤ x3 ≤ L,

(5.1) Fε(v, x1, x3) ≥ 2 |f(v(x1)) + f(v(x3))− 2f(v(x2))| .

Indeed, assume with no loss of generality that v ∈ C1(0, L). Then, by Cauchy’s in-
equality,

Fε(v, x1, x3) =

∫ x3

x1

(
ε(v

′
)2 +

(1− v)2

ε

)
dx ≥

∫ x3

x1

2
∣∣∣v′

(1− v)
∣∣∣ dx

= 2

∫ x2

x1

∣∣∣∣(v − v2

2
)

′
∣∣∣∣ dx+ 2

∫ x3

x2

∣∣∣∣(v − v2

2
)

′
∣∣∣∣ dx

≥ 2

∫ x2

x1

(v − v2

2
)

′
dx+ 2

∫ x3

x2

−(v − v2

2
)

′
dx

= 2(2f(v(x2))− f(v(x1))− f(v(x3))).

Arguing similarly, we also obtain

Fε(v, x1, x3) ≥ 2(f(v(x1)) + f(v(x3))− 2f(v(x2)))
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and thus (5.1) follows.
In a first step, we establish a universal lower bound for Eε over Bε as well as an

upper bound for the infimum of Eε over Bε. In fact, for all (u, v) ∈ Bε, we have

(5.2) Eε(u, v) ≥ Fε(v, 0, L) ≥ 2(f(µ)− f(α)),

while there exists (uε, vε)) ∈ Bε such that, for ε small,

(5.3) Eε(uε, vε) ≤ 1 + o(1).

To see (5.2), let (u, v) ∈ Bε. Then, using (5.1) with x1 = x2 = 0 and x3 = L, we get

Fε(v, 0, L) ≥ 2(f(v(0))− f(v(L))) ≥ 2( min
x∈[µ,2−µ]

f(x)−max
x≤α

f(x)) = 2(f(µ)− f(α)).

Assertion (5.3) is derived upon constructing a sequence (uε, vε) which is very similar
to that used in the proof of the Γ-limsup of the Ambrosio-Tortorelli functional in [4]. We
omit the details.

The direct method of the calculus of variations immediately implies that the minimum
of Eε over Bε is achieved at, say (uε, vε). By (5.3),

(5.4) Eε(uε, vε) = min
(u,v)∈Bε

Eε(u, v) ≤ 1 + o(1).

For a suitable choice of (µ, α), a minimizer (uε, vε) of Eε over Bε is actually a critical
point of Eε for ε sufficiently small. This is the object of the following

Lemma 5.1 There exists (µ, α), independent of ε, such that if (uε, vε) is a minimizer of
Eε over Bε then it is a critical point of Eε if ε is small enough.

Proof. To prove the criticality of (uε, vε), it suffices to prove the following inequalities
with a suitable choice of (µ, α):
(i) µ < vε(0) < 2− µ, and
(ii) vε(L) < α.

Indeed, then (uε, vε) is not on the boundary of Bε but rather in its interior, hence it is
a local minimizer of Eε and thus a critical point.

Our proof is by contradiction. We assume that there exists a sequence εj → 0 such
that either (i), or (ii) is not satisfied. Then, for each j, we have at least an equality in
either (i), or (ii). However, through relabelling, we can assume that either (i), or (ii) is
never satisfied.

Suppose that, for all ε, either vε(0) = µ, or vε(0) = 2− µ. It is enough to consider the
first case because f(µ) = f(2− µ) and only the value of f(v(0)) enters the proof.

We introduce the following special points xε. From (5.4), we know that∫ 3L/4

L/4

(1− vε)2

ε
dx ≤ Eε(uε, vε) ≤ 1 + o(1).
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Thus, we can find points xε ∈ (L/4, 3L/4) such that vε(xε) → 1 as ε → 0. Then, using
(5.1),

Fε(vε, 0, L) ≥ 2(2f(vε(xε))− f(vε(0))− f(vε(L))) ≥ 2(2f(vε(xε))− f(µ)− f(α))

≥ 2(1− f(µ)− f(α))− o(1).

Therefore

(5.5) 1 + o(1) ≥ Eε(uε, vε) ≥ Fε(vε, 0, L) ≥ 2(1− f(α)− f(µ))− o(1).

Thus, if we require additionally that

(5.6) f(α) + f(µ) < 1/2,

we reach a contradition in (5.5).
Were (ii) not true, then vε(L) = α. Set

(5.7) α∗ε = minx∈[0,L]vε(x).

Then, for all ε, one has α∗ε ≤ α. We first improve the lower bound for Fε(vε, 0, L) as follows

(5.8) Fε(vε, 0, L) ≥ 2 [1/2 + min {f(α)− 2f(α∗ε), 1/2− 2f(α)}]− o(1).

Indeed, if yε ∈ (0, L] is such that vε(yε) = α∗ε, then either xε > yε, or xε < yε. If xε ∈ (yε, L]
then, applying (5.1) with x1 = yε, x2 = xε, x3 = L, and recalling that α∗ ≤ α < 1, yields

Fε(vε, 0, L) ≥ 2(2f(vε(xε))− f(vε(yε))− f(vε(L))) ≥ 2(1− f(α∗ε)− f(α))− o(1)

≥ 2(1− 2f(α))− o(1).

If xε < yε ≤ L, then, applying (5.1) with x1 = xε, x2 = yε, x3 = L yields

Fε(vε, 0, L) ≥ 2(f(vε(xε)) + f(vε(L))− 2f(vε(yε)))

≥ 2(1/2 + f(α)− 2f(α∗ε))− o(1).

Hence (5.8).
If f(α)− 2f(α∗ε) is strictly positive, say,

(5.9) f(α)− 2f(α∗ε) ≥
1

2
f(α) > 0

then we obtain a contradiction with (5.4) since

(5.10) 1/2− 2f(α) > 0,

provided α is small enough. Thus, the only case left is f(α) − 2f(α∗ε) <
1
2
f(α). But this

case never occurs, thanks to the following
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Proposition 5.2 Take α1 ∈ (0, α), independent of ε, such that f(α) ≥ 4f(α1). Then,

(5.11) min
x∈[0,L]

vε(x) = α∗ε ≤ α1,

and thus (5.9) is always satisfied.

Proof. Assume that (5.11) is false, i.e.,

(5.12) vε(x) ≥ α1 ∀ x ∈ [0, L].

We show that the energy Eε(uε, vε) is actually greater than 1 and thus reach a new contra-
diction. Since (uε, vε) minimizes Eε over Bε, (uε, vε) is, at the least, a critical point of Eε on
(0, L) with respect to compactly supported variations in both vε and uε. Thus, on (0, L),

(5.13)
−εv′′

ε + vε(u
′

ε)
2 +

vε − 1

ε
= 0

[u
′

ε(ηε + v2
ε)]
′ = 0.

The second equation of (5.13) shows that, on (0, L),

(5.14) u
′

ε(x)(ηε + v2
ε(x)) = cε a.e. x

for some constant cε. From (5.4), (5.14), and, since uε is in particular in W 1,1(0, L),

o(1) + 1 ≥ Eε(uε, vε) ≥
∫ L

0

(ηε + v2
ε)(u

′

ε)
2 =

∫ L

0

cεu
′

ε = aεcε,

so that

cε ≤
C
aε
.

Hence, at the possible expense of extracting a subsequence,

(5.15) cε → c0, ε↘ 0.

On the other hand, the energy bound Eε(uε, vε) ≤ 1 + o(1) implies that vε converges to 1
in L2(0, L) and thus vε(x)→ 1 a.e x ∈ (0, L). Therefore

u
′

ε(x) =
cε

ηε + v2
ε(x)

→ c0 as ε→ 0 for a. e. x ∈ (0, L).

In view of (5.12), (5.14), u
′
ε is bounded. Therefore, by Lebesgue’s dominated convergence

theorem,

aε =

∫ L

0

u
′

εdx→
∫ L

0

c0dx = c0L.
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Hence c0 = a/L > 0. Now,∫ L

0

(ηε + v2
ε)(u

′

ε)
2dx =

∫ L

0

cεu
′

εdx = cεaε ≥ c0a− o(1) ≥ a2

L
− o(1).

This, together with inequality (5.2), allows us to deduce that

1 + o(1) ≥ Eε(uε, vε) =

∫ L

0

(ηε + v2)(u
′
)2dx+ Fε(vε, 0, L) ≥ a2

L
+ 2(f(µ)− f(α))− o(1).

This is again impossible if we initially choose

(5.16)
a2

L
+ 2(f(µ)− f(α)) > 1.

�
Summing up and recalling (5.6), (5.10) and (5.16), any minimizer (uε, vε) of Eε over Bε

is actually a critical point of Eε when ε is small enough, provided the following conditions
on µ and α are satisfied

(5.17) 0 < α < µ < 1, f(µ) + f(α) < 1/2, 1/2− 2f(α) > 0,
a2

L
+ 2(f(µ)− f(α)) > 1.

The set of (µ, α) meeting the above requirements is not empty. �
The third and final step in the proof of Theorem 2.4 is to describe the behavior of

(uε, vε) as ε→ 0. By Lemma 5.1, we easily see that (uε, vε) is a local minimizer of Eε. To
complete the proof, we have to prove that
(i) vε has only one v-jump at x = L, and
(ii) u, the limit function of uε in L2(0, L), is identically 0 on (0, L).

Let us prove (i). From the definition of vε, we know that vε(L) ≤ α < 1. We also know
from Lemma 5.1 that (uε, vε) is a critical point of Eε, hence v

′
ε(0) = v

′
ε(L) = 0. Now, we

invoke the remarks of Section 3.5 to conclude that vε has a v-jump at x = L. If vε has
another v-jump, either at x = 0 or at an interior point of (0, L), then, using (4.3), we find
that the limit energy of Eε is at least 2×3/4 = 3/2. However, from (5.4), we know that the
limit energy of Eε(uε, vε) is not greater than 1, and thus vε has only one v-jump at x = L.

It remains to establish (ii). From (i), we know that vε is a half-well with the sink at
x = L. So, from Theorem 2.2, we see that either u ≡ 0 or u(x) = ax/L for x ∈ (0, L). The
latter case cannot happen, because if it does, then by lower semicontinuity and recalling
(5.2) and the fact that vε → 1 in L2(0, L), one finds that

1 ≥ lim inf
ε→0

Eε(uε, vε) ≥ lim inf
ε→0

∫ L

0

(ηε + v2
ε(x))(u

′

ε(x))2dx+ lim inf
ε→0

Fε(vε, 0, L)

≥
∫ L

0

(u
′
(x))2dx+ 2(f(µ)− f(α)) =

a2

L
+ 2(f(µ)− f(α)) > 1.

which is impossible in view of (5.17). The proof of Theorem 2.4 is now complete.
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Remark 5.3 If N = 1 and the v-jump is at the boundary of (0, L) then the critical points
(uε, vε) of Eε constructed in Theorem 2.4 are also local minimizers of Eε. We conjecture
that if N = 1 and the v-jump is at L/2 or if N ≥ 2, then the critical points (uε, vε) found
in Theorem 2.4 are also local minimizers of Eε.

6 Proof of Theorem 2.5

The measure limit of (ηε + v2
ε)(u

′
ε)

2dx is immediately computed upon remarking that,
thanks to (2.6),

(ηε + v2
ε)(u

′
ε)

2 = cεu
′
ε,

so that the measure limit of (ηε + v2
ε)(u

′
ε)

2dx is that of cεu
′
εdx. Testing with a smooth

compactly supported function ϕ, we obtain∫ L

0

cεu
′
εϕ dx = −cε

∫ L

0

uεϕ
′ dx −→ −c0

∫ L

0

uϕ′ dx,

so that, upon recalling Theorem 2.2, we obtain the desired result. The reader will have
not failed to note the fortuitousness of the value of c0, i.e., 0, when u jumps; the result
would be false if u could jump for non-zero values of c0!

The computation of the measure limit of the other two terms is more delicate. We
first establish that there is no concentration of energy for those two terms away from the
jump points. We will only use the property that there is a finite ε-independent number jof
v-jumps on [0, L], denoted by x1

ε, ...., x
j
ε, with xkε → xk, k = 1, ..., j.

Lemma 6.1 For any compact subset K ⊂ [0, L] \ ∪k=1,...,j{xk}, we have∫
K

(
ε(v′ε(x))2 + (1− vε(x))2/ε

)
dx ≤ CKε1/4,

where CK may depend only on K.

Proof. Consider Aε := {x ∈ [0, L] : vε(x) ≤ 1 − ε1/4}. Then, from the energy bound
(2.5), |Aε| ≤ C

√
ε, while {x1

ε, ..., x
j
ε} ⊂ Aε. For a given compact subset K of [0, L] \

∪k=1,...j{xk}, set δ := 1/2 mink=1,...,j dist(xk, K). If ε is small enough, {x1, ..., xj} ⊂ Aε ⊂
Uδ := ∪k=1,...,j[xk − δ, xk + δ], so that, K ∩ Aε = ∅. Because K ⊂ [0, L] \ Uδ, it suffices to
prove that

(6.1)

∫
[0,L]\Uδ

(
ε(v′ε(x))2 + (1− vε(x))2/ε

)
dx ≤ CKε1/4.

Let us denote Vδ = [0, L]\Uδ. Multiplying both sides of the first equation of (2.4) by vε−1
and integrating over Vδ, we get

(6.2)

∫
Vδ

−εv′′

ε (x)(vε(x)− 1)dx+

∫
Vδ

vε(x)(u
′

ε(x))2(vε(x)− 1)dx+

∫
Vδ

(vε(x)− 1)2

ε
dx = 0.
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Note that Vδ is a union of a finite ε-independent number J (≤ j + 1) of intervals on [0, L]:
Vδ = ∪k=1,...,J [akε , b

k
ε ]. Now, integrating by parts the first term of (6.2), recalling (2.6) and

rearranging, one obtains

(6.3)∫
Vδ

ε(v
′

ε(x))2dx+

∫
Vδ

(vε(x)− 1)2

ε
dx =

J∑
k=1

ε
(
v

′

ε(b
k
ε)(vε(b

k
ε)− 1)− v′

ε(a
k
ε)(vε(a

k
ε)− 1)

)
+

∫
Vδ

c2
ε

(ηε + v2
ε(x))2

vε(x)(1− vε(x))dx.

By the definitions of Aε and Vδ, we have |1− vε| ≤ ε1/4 on Vδ. Combining this fact with
the gradient bound for vε in Lemma 3.4 yields that the right hand side of (6.3) is bounded
from above by CKε1/4 for some constant CK which may depend only on K. Hence the
desired result stated in (6.1) follows.

�

Remark 6.2 The previous lemma shows that the measure limits of ε(v′ε(x))2 dx, and
of (vε(x) − 1)2/ε dx are Dirac masses concentrated at x1, ..., xj. We will evaluate their
respective weight in the fourth and final step below.

Also note that, thanks to Lemma 3.6, those limits are immediately computed (and
found to be 0!) in the absence of v-jumps.

The second step consists in computing the limit d0 of the discrepancy dε defined in
(3.3), which exists, at least for a well chosen subsequence, by the boundedness (3.4) of dε.
To this effect, we prove the following

Lemma 6.3 d0 + c2
0 = 0.

Proof. Recalling (3.3), (2.6), we obtain

(6.4) dε + cεu
′
ε(x) =

(vε(x)− 1)2

ε
− ε(v′ε(x))2,

and thus

(6.5) |dε + cεu
′
ε(x)| =

∣∣∣∣(vε(x)− 1)2

ε
− ε(v′ε(x))2

∣∣∣∣ .
Let Aε, K with |K| > 0 and δ be as in the proof of Lemma 6.1. Then, on K, one has
1 − ε1/4 ≤ vε ≤ 1. By virtue of (2.6), u

′
ε is bounded on K. Upon integrating (6.5) over

K, recalling Lemma 3.2 and letting ε↘ 0, we have by Lebesgue’s dominated convergence
theorem

(6.6) |K|
∣∣d0 + c2

0

∣∣ = lim
ε→0

∫
K

|dε + cεu
′
ε(x)| dx = lim

ε→0

∫
K

∣∣∣∣(vε(x)− 1)2

ε
− ε(v′ε(x))2

∣∣∣∣ dx.
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In view of Lemma 6.1, the last term of the above equation is 0. Thus d0 + c2
0 = 0 as

claimed. �

The third step consists of the following equi-partition result

Lemma 6.4 For all x in [0, L],

|v′ε(x)| ≤ 1− vε(x)

ε
.

Further,

lim
ε→0

∫ L

0

|ε(v′ε(x))2 − (vε(x)− 1)2/ε| dx = 0.

Proof. According to (6.4), the term (vε(x)− 1)2/ε − ε(v′ε(x))2 attains, for a fixed ε, its
minimum on [0, L] precisely where u′ε = cε/(ηε + v2

ε) attains its minimum, or still, where
vε attains its maximum. But, at such points, v′ε cancels, so that the minimum of that term
is non-negative. Thus,∫ L

0

∣∣∣∣(vε(x)− 1)2

ε
− ε(v′ε(x))2

∣∣∣∣ dx =

∫ L

0

(
(vε(x)− 1)2

ε
− ε(v′ε(x))2

)
dx

=

∫ L

0

(dε + cεu
′
ε(x)) dx = Ldε + cεaε

→ Ld0 + c0a = L(d0 + c2
0) = 0,

in view of Lemma 6.3. �

The fourth and final step consists in evaluating the respective weights of the Dirac
masses making up the limit of ε(v′ε(x))2 dx and of (vε(x)− 1)2/ε dx.

To this effect, we first remark that, at the possible expense of extending vε by re-
flection around x = 0 and/or x = L, we may always compute the measure limit µ of
(ε(v′ε(x))2 + (vε(x)−1)2/ε) dx over some I ⊃ [0, L], so that µ(∂I) = 0, in which case
µ(I) = limε

∫
I
(ε(v′ε(x))2 + (vε(x)−1)2/ε) dx, while Lemma 6.4 still applies over I.

Note that∫
I

(
ε(v′ε(x))2 +

(vε(x)−1)2

ε
− 2|v′ε(x)|((1−vε(x))

)
dx =

∫
I

(
ε1/2|v′ε(x)|− (1−vε(x))

ε1/2

)2

dx

≤
∫
I

∣∣∣∣ε(v′ε(x))2− (1−vε(x))2

ε

∣∣∣∣ dx,
which goes to 0 with ε, according to Lemma 6.4 above. Thus, the total mass of the measure
limit of (ε(v′ε(x))2 + (vε(x)−1)2/ε) dx, is also that of 2|v′ε(x)|((1−vε(x)) dx. But, we know,
according to Proposition 4.2, that the graph of vε is symmetric around each v-jump, so
that it suffices to compute the mass of measure limit of 2|v′ε(x)|((1−vε(x)) dx over a half
well, that is, ∫

{x:vε(x)∈[mε,Mε]}
2|v′ε(x)|((1−vε(x)) dx,
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or still, since v′ε(x) > 0 on {x : vε(x) ∈ [mε,Mε]},∫ Mε

mε

2(1− y) dy = (2Mε −M2
ε )− (2mε −m2

ε) −→ 1,

as ε↘ 0, since Mε ↗ 1, while mε ↘ 0. Hence the measure limit µ is given by

µ = 2
∑

{x: x is a v-jump}

δx.

The proof of Theorem 2.5 is now complete.

Acknowledgements: The authors are grateful to the referees for their comments and criticisms
which resulted in a hopefully improved version of the original manuscript.
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