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ABSTRACT

This study is a sequel of Francfort [1], where homogenization of linear
dynamic thermoelasticity with rapidly varying coefficients had been performed.
We demonstrate how consideration of a simple one-dimensional example leads to
numerical results that exhibit all the features that were theoretically pre-
dicted and in particular the presence of fast oscillations in the temperature

field.




INTRODUCTION

In a previous report (see Francfort [1]) we studied the homogenization

;
g

of an idealized, thermoelastic composite material. The idealization resided

in the assumed periodicity of all relevant mechanical and thermal coefficients.
We established the existence of an equivalent homogeneous thermoelastic material.
The solution of any initial-boundary value problem for a body made of this com-
posite material was found to converge to the sﬁlution of a related initial-
boundary value problem for a body made of the equivalent material as the size

o
,
co

of the period of the coefficients approaches zero. In the latter problem,wghe !

-~

boundary conditions, the initial displacement and velocity fieldswféﬁﬁin un-

changed, but a change in the initial temperature field také; place. Such a
change is highly unusual in this type of problems. We then proceeded to ana-
lize the phenomena that accompany such a change. Using asymptotic expansions,

we disclosed the existence of fast oscillations in the temperature field.

These oscillations are generated by the periodic structure of the material,
although they need not be periodic. The temperature field of the equivalent
homogeneous material represents a time average of these fast oscillations.
i In this report we illustrate these phenomena with a one-dimensional ex-
ample. The presence of fast oscillations in the temperature field, as well
as the necessity of the shift 19 initial temperature are clearly evidenced.
1. Description of the Problem
We consider a bar of length L made of a periodic assembly of two dif-
ferent materials. This bar is to be studied in tension-compression. It is

built-in and both ends are at ambient temperature.
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‘f . The two thermoelastic media that enter the problem are denoted by 1 and
2, respectively. Note that this bar can be thought of as an infinite, layered
strip provided both ends are built-in and are maintained at constant temper-
ature and provided the displacements are taken to be normal to the layering.

Our reference cell Y 1s taken to be as in Fig. 2,

and its length is taken to be unity.

NN
We define all relevant coefficients 2 \

on Y by:
Figure 2
i E, for material 1 ‘
' E(y)= » Young's modulus,
{ B, for material 2
i
: a(y) » coefficient of thermal expansion
’ p(y) , density >
TOA (y) s coefficient of thermal conductivity
" To8(y) ,
H —p—(-;)— , specific heat, }

0 being the reference temperature.

f
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Then if n 1s the number of cells that compose the bar, each of these

cells is the e-scaled version of Y , where

-l a-2)
n
Our set of equations can be written as
d du® €
plx/e) &€ = oo (B(x/e) (G - alx/e)T"))
(1-3)
€ 2 ¢
B(x/e) 1% = TC:E (A (x/€) %’x— ) - E(x/e) a(x/e) —:—td“x— .

where “?x,t) is the displacement field, T?x,t) is the increment of tem-
perature field, and a dot denotes time differentiation. The boundary condi-

tions associated with (1.3) are

u®(0,t) = u¥(L,t) = 0 ; t5(0,t) = t°(L,£) = 0 (1-4)
We then impose on the bar a set of initial conditioms:

u®(x,0) = £(x) ; 0S(x,0) = g(x) ; 1°(x,0) = k(x) (1-5)

We propose to compare the solution of (1-3)-(1-5) to the solution of the
related initial-boundary value problem for the equivalent homogeneous material.

In our case the homogenized coefficients can be explicitly computed with the

help of Eqns (1-27) of Francfort [1].
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We obtain
E =2 E\E, s - 211A2 .- a; +a, s . Py + 9,
9 ’ * »
E, +E xl + Az 2 2
B, +8 (E,a, - E,a,)(E, - E.) (Es0, - E,a,)>
g = 1 2 y = 171 27271 2 o 171 22
1] » »
2 2(E1 + EZ) 2(E1 + 82)
B=B+o0 (1-6)
Then the equations for the equivalent material are given by:
2 2 2
-——e d"u dr - a“t du
pu=E - - Ea gy » BT =27 - B —grax” -7
dx dx

where u and Tt are, respectively, the displacement and the increment of

temperature fields. The boundary conditions remain unchanged, i.e.:
u(0,t) = u(L,t) = 0 ; 1(0,t) = r(L,t) = O (1-8)
The initial conditions are:

) B +v & @
u(x,0) = £(x) , u(x,0) = g(x) , 1(x,0) = 8 1-9)

Since we are in no position, even with very simple initial conditions, to solve

either problem exactly, we have to resort to a numerical procedure which is

briefly described in the next section.
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2, Discretization of the Problem

We first perform a space discretization of the equations (1-3) and (1-7).
Our discretization consists of taking piecewise linear shape functions.
Having performed the standard steps of a finite element analysis, i.e. Gal-
erkin and matrix formulations, we obtain the following system of ordimary

differential equations:

pts)

Md = -Kd - HT , Mt = -KT - Hd (2-1)

[} -

where M, K, H, M, K, H are suitable consistent mass, stiffness and damping

matrices and where the vectors d,T are, respectively, the displacement and

the temperature vectors. We do not specify which system equations (2-1) are
referring to since we discretize (1-3) and (1-7) in a similar manner. Of
) course the values of all the relevant matrices will be different in each case.
To solve (2-1) we rewrite it as a second-order system in d and define

n as

t
O n=[1adt (2-2)

! o
d K 0
+
n 0 0

and we use on (2-3) a fully implicit trapezoidal Newmark algorithm (see

We obtain

¢

9
ks

=
o
N

4
dt

o
<]
A
(2]

d
=0 (2-3)
n

n H K

Zienkiewicz [6]). Such an algorithm insures unconditional stability and second

order accuracy.
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The actual finite element program used is Taylor's FEAP (finite element

analysis program; refer to Zienkiewicz [6]),modified and improved by J. Wingett [5].

3. Specific Problem Treated and Numerical Results

Caution should be exercised in a transient analysis when realistic data

! are considered, since the relative magnitudes of the coefficients have several
consequences:

i) since the damping factor in the equations is rather small, attenua-

tion will take place on a very long time scale; a short time scale is, i
; however, necessary to accurately reproduce the displacement field,

i1i) the magnitude of the coefficients strains the numerical procedure

because it overextends the precision capabilities of the computer.
é ' This is why, as a first step, we consider unrealistic coefficients that
é will not generate such complications but that will clearly illustrate the

diverse phenomena occurring in the problem. We suppose that all relevant co-

efficients are equal to 1. for the first material, and to 2. for the second.
The initial conditions are of two different types: initial temperature with

i no initial displacements or velocities (case (a)) or initial displacements

- with no initial temperature or velocities (case (b)). In both cases, we take

these initial conditions to be of the form ;

1 - cos 235

Our choice of coefficients implies a reduction of the initial temperature

/St

PR S

by a factor of 2 in case (a) when passing from a heterogenous to a homogenous

material. The computations should show unequivocally that this shift is nec-

essary, because, in view of the linearity of the solution with respect to the

TR TR NPT

initial conditions, a temperature twice as large initially will produce a

homogenized temperature and displacement field twice as large for all subsequent
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times. Such a solution should then totally disagree with the solution for
the heterogenous medium. This is confirmed by Figures 3 to 6 which give the
displacement and temperature field of a point located at one-third of the bar
as a function of time:

+ Figures 3 and 4 correspond to 7.5 cells

+ Figures 5 and 6 correspond to 40.5 cells

The fast temperature oscillation as foreseen in Francfort {1] is clearly
present. One should observe that the homogeneous temperature averages the
fast oscillations.

Figures 7 to 10 illustrate the behavior of the fields at the same point
for case (b). The fast oscillations are less obvious for 7.5 cells, but appear
clearly when 40.5 cells are considered.

Figures 11 and 12 are a space representation of the displacement and
temperature fields at t = ls , with 40.5 cells present. In the case of the
temperature field, one should not expect a close agreement between both curves:
the fast oscillations in time make the heterogenous solution oscillate about
the homogeneous one; thus at a given time, we merely obtain a "stroboscopic"
picture of this oscillation.

We now turn our attention to a more realistic composite, made of epoxy
and graphite. The relevant data are taken from Miner-Sandstone {4] for
graphite, and C. Lynch [3] for epoxy. For such values of the coefficients,
¢ 1s negligible but y/8 4is -1.81. The need for a non-zero initial tem-
perature for the homogeneous material due to a non-zero initial displacement

should be clearly felt. We consider the initial data to be a initial dis-

placement of the form

- 2
u(0) = 10 3(1 - cos ;) (ft.)




Coefficients Epoxy Graphite
Density o in 1b/£t> (kg/m) 72(1153.) 120 (1922.)
o L P L T T s
Young's modulus E in 1b/f£t® (8/m?) | 7(335.3) 1070’y | 32 @s32.7) 10’@a0’)

- e ot w— —— . e o - —— o — o —

- e e - — ——— — — — . —— — — — — — ——

Reference temper. T, in °F (°C)

e — o — e - —— — ———

70 (21)

70 (21)

Figures 13 and 14 do show the need for a non-zero initial temperature in

the case of a noan-zero initial displacement.

The presence of fast oscillations

which average in time to the homogenized temperature field is unquestionable.

Note that the number of cells considered in this last problem is relatively

high (70.5 cells).

computat:ions.

This confirms our preliminary remarks.

Mote also that no damping has occurred on the scale of our

It 1s appropriate at this point to stress that the solution of a thermo-

elastic problem differs radically from the solution of an elastic, or heat

conduction problem.

The bumps that can be observed in Fig. 13 could never

appear in a purely elastic displacement field, nor could the sharp angles of

Fig. 14 in a pure heat conduction problem.

All the computations of Section 3 were performed on an IBM 3033 with an

ORVYL compiler.

The average CPU time needed for 160 space points and 500
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iterations is 90s. Consideration of the number of operations involved in the
different steps of a two-dimensional problem shows that CPU times of the order
of four hours would be necessary to perform a similar computation. The asso-
ciated cost would be clearly prohibitive under most circumstances.
CONCLUSION

In this study we have demonstrated the reality of the initial temperature
shift and its link to the existence of fast oscillations in temperature. As
predicted in Francfort [1], the shift is necessary as soon as the initial
"phase" of the oscillation is different from zero, which is the case in the
examples treated.

The frequencies of the fast oscillations are not the natural vibration
frequencies of a cell. They are given through (2.20) of Francfort [1] and,
as remarked there, the oscillations need not be periodic, even when only a
finite number of frequencies of the cell are excited (see Francfort [2], Part
I, Ch. 3, Section 4 for an example.)

An experimental confirmation of the theoretical and numerical results

obtained here would be a fascinating and worthwhile task.
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Time Comparison of Heterogeneous vs Homogeneous (at x= L/3)
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